Ultrafast carrier recombination in BC₆N/SnXY Z-scheme heterostructure for water splitting: insights from ground- and excited-state carrier dynamics

Jingshan Zong¹, Cheng He^{2,*}, Wenxue Zhang^{1,*}

¹School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China

²State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China

*Corresponding Authors. Email: <u>hecheng@mail.xjtu.edu.cn</u> *Corresponding Authors. Email: <u>wxzhang@chd.edu.cn</u>

Fig. S1 The band structure and structure diagram of $(a)BC_6N/SnS_2$ and (b) BC₆N/SnSSe. The calculated of corresponding DOS for monolayers in heterojunction of (c) BC₆N/SnS₂ and (d) BC₆N/SnSSe.

Fig. S2 The different stacking configuration for BC₆N/SnXY

Fig. S3 The binding energy of (a) BC_6N/SnS_2 and (b) $BC_6N/SnSSe$. (c)(d) are the band

structure and structural schematic for $BC_6N/SnSe_2$ and $BC_6N/SnSSe$.

Fig. S4 The band alignment of BC₆N and SnXY monolayers.

Fig. S5 The band alignment of (a)BC₆N/SnS₂, (b) BC₆N/SnSe₂ and (c) BC₆N/SnSSe heterojunction. Here, Φ (work function) represent the difference of vacuum and Fermi level.

Fig. S6 The angular dispersion of hole effective mass for BC₆N/SnS₂ and BC₆N/SnSSe.

Fig. S7 The calculated average charge density difference and electronic potential for three kinds of heterojunctions.

Fig. S8 The calculated average electronic potential for BC₆N/SnSeS.

Fig. S9 The calculated free energy changes of HER for different adsorption sites on $BC_6N/SnXY$

Monolayers	α(Å)	β(Å)	$d_{ ext{C-C}}$	$d_{ ext{C-B}}$	$d_{ ext{B-N}}$	$d_{ m Sn-S}$	$d_{\mathrm{Sn-Se}}$	$\Phi(eV)$	$E_{g}^{HSE}(eV)$
BC ₆ N	4.975	4.975	1.416	1.475	1.456			5.05	1.83
SnS_2	3.663	3.663				2.583		7.08	2.39
SnSe ₂	3.823	3.823				—	2.730	6.43	1.42
SnSSe	3.740	3.740				2.611	2.704	6.29	1.56

Table S1 The structural parameters of monolayers materials

Monolayers	X-B	X-S1	X-S2	X-N	X-V
BC ₆ N/ SnS ₂	3.378	3.432	3.413	3.383	3.338
BC ₆ N/SnSe ₂	3.325	3.421	3.450	3.384	3.456
BC ₆ N/SnSSe	3.408	3.483	3.447	3.446	3.426

Table S2 The interlayer distances of BC₆N/SnXY heterostructure

The Gibbs free energy

The method proposed by Nørskov was used to calculate the Gibbs free energy (

 ΔG), and the formula for every elemental step was shown below:

$$\Delta G = \Delta E + \Delta E_{\text{ZPE}} - T\Delta S \tag{1}$$

where ΔE is the electronic energy difference between the reactants and products,

 $\Delta E_{\text{ZPE}and} \Delta S$ are the variation of the zero-point energy and entropy at room temperature (T = 298.15 K), respectively.