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The DFT calculations were carried out using the Vienna Ab-initio Simulation 

Package (VASP)1, 2 with the frozen-core all-electron projector-augment-wave (PAW)3, 

4 method. The Perdew-Burke-Ernzerhof (PBE)5 of generalized gradient approximation 

(GGA) was adopted to describe the exchange and correlation potential. The cutoff 

energy for the plane-wave basis set was set to 450 eV. A mono-layer 8×8 graphene was 

used, and a vacuum region of 20 Å above it was used to ensure the decoupling between 

neighboring systems. N-doped graphene (NC) was simulated by inducing 2-pyrrolic N, 

3-pyridinic N, and 3-graphitic N in the graphene. The Ru13 and 2-layer 3×3 MoC (111) 

clusters were placed on the NC to built Ru/NC and MoC/NC composites, respectively. 

Both of Ru13 and MoC cluster was placed on the NC to built Ru/MoC@NC composite, 

and 2-C atoms of NC were replaced by 2-B atoms was used to simulate the models of 

B-N-co-doped graphene (BNC). The geometry optimizations were performed until the 

forces on each ion was reduced below 0.01 eV/Å, and a 1×1×1 Monkhorst-Pack k-

point6 sampling of the Brillouin zone was used. The DFT-D3 method were used to 

describe the van der Waals interaction7.

The Gibbs free-energy (∆G) is calculated as

∆G = EDFT + ∆EZPE - T∆S

∆EZPE is the difference corresponding to the zero point energy between the adsorbed 

molecule and molecule in the gas phase and ∆S is one molecule entropy between 

absorbed state and gas phase. EDFT is the total energy of DFT calculated system. 

The formation energy (Ef) of Ru13 cluster on MoC@BNC substrate was calculated 

by the following equation:



Ef = E Ru/MoC@/BNC - E MoC@BNC - E Ru

where E Ru/MoC@BNC is the total energy of Ru/MoC@/BNC, E MoC@BNC is the total 

energy of MoC@BNC substrate, and E Ru is the total energy of Ru13 cluster.
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Fig. S1 XRD patterns of MoC@BNC samples before and after methanol washing.
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Fig. S2 (a) SEM image, (b) EDS elemental mapping of C, N, Mo, and O, (c) TEM 

image (inset is the particle size distribution of MoC), and (d) HR-TEM image of 

MoC@NC.
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Fig. S3 B 1s XPS spectra of MoC@BNC and BNC.

Table S1 The loadings of Ru and Mo on various samples analyzed by ICP-OES.

Material Ru (wt.%) Mo (wt.%)

Ru/MoC@BNC 4.0 17.0
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Fig. S4 The optimized structures of Ru13 cluster on the surface of MoC@BNC substrate 

and the corresponding formation energy (Ef).
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Fig. S5 (a) SEM image, (b) EDS elemental mapping of Ru, Mo, C, and N, and (c) TEM 

image of Ru/MoC@NC.
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Fig. S6 (a) SEM image, (b) EDS elemental mapping of Ru, C, N, and O, and (c-d) TEM 

image of Ru/NC.

Table S2 Porosity parameters of Ru/MoC@BNC, Ru/MoC@NC, and Ru/NC obtained 

from N2 adsorption desorption isotherms.

a total pore volume at P/P0= 0.99.

Materials SBET (m2/g) Va
total (cc/g)

Ru/MoC@BNC 227.0 1.29

Ru/MoC@NC 218.3 1.20

Ru/NC 250.0 1.11
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Fig. S7 Polarization curve of MoC@BNC and MoC@NC in 1.0 M KOH electrolyte at 

5 mV s-1. 
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Fig. S8 Polarization curve of Ru/MoC@BNC of different B contents in 1.0 M KOH 

electrolyte at 5 mV s-1.



Table S3 Comparison of η10 and tafel slope of Ru/MoC@BNC with representatively 

reported HER electrocatalysts.

Catalysts Overpotential at 10 mA cm-2 (mV) Ref.
Ru/MoC@BNC 14 This work

Ru NCs/NC 14 8

Mo-Ru NSAs 16 9

TNCR-600 17 10

B-Ru@CNT 17 11

Mo2C-Ru@CNBs 18 12

P, Mo-Ru@PC 21 13

RuNi/MoC@NC 21 14

Ru@WNO-C 24 15

Ru/α-MoC 25 16

Ru/NBC 30 17

Ru/BN@C 32 18

Ru-Mo2C/CN 34 19

Mo-Ru/CNTs 35 20

Ru/TiN-300 38 21

Mo-RuCoOx 41 22

Ru SAs/N-Mo2C NSs 43 23
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Fig. S9 Cyclic voltammogram of Ru-based catalysts with different rates from 20 to 120 

mV s-1.
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Fig. S10 The capacitive current at 0.1 V as a function of scan rate for Ru/MoC@BNC, 

Ru/MoC@NC, and Ru/NC.
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Fig. S11 Polarization curves normalized by ECSA for the Ru/MoC@BNC, 

Ru/MoC@NC and Ru/ NC.
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Fig. S12 Polarization curve of Ru/MoC@BNC, Ru/MoC@NC and Ru/NC in 1.0 M 

KOH electrolyte at 5 mV s-1 (the unit of current density is mA ).𝑚𝑔‒ 1𝑅𝑢
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Fig. S13 (a) SEM image, (b) Ru, Mo, C, B, N, and O EDS elemental mapping and (c) 

TEM image of Ru/MoC@BNC following the durability test.



Fig. S14 Optimized adsorption structures of *OH+*H for (a) Ru/NC, (b) 

Ru/MoC@NC, and (c) Ru/MoC@BNC.
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