Supporting Information:

Expanding the Horizons of Thermodynamic Landscape and Optoelectronic Properties of Soft 2D Hybrid Perovskites MHy₂PbX₄

Szymon Sobczak^{*,a}, Andrzej Nowok^{b,c}, Jan K. Zaręba^d, Aleksandra Półrolniczak,^a Kinga Roszak,^a

Anna Z. Szeremeta^e, Błażej Dziuk^d, Filip Dybała^f, Sebastian Pawlus^e, Robert Kudrawiec^f, Adam Sieradzki^e, Mirosław Mączka^g,* Andrzej Katrusiak *,^a

^a Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland

^b Laboratoire National des Champs Magnétiques Intenses, EMFL, CNRS UPR 3228, Université Toulouse, Université Toulouse 3, INSA-T, Toulouse 31400, France

^c Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland

^d Institute of Advanced Materials, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland

^e August Chelkowski Institute of Physics, University of Silesia in Katowice, ul. 75 Pułku Piechoty 1, 41-500 Chorzów, Poland

^f Department of Semiconductor Materials Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland

^g Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland

Reassingment of phase II-MHy₂Pbl₄

The X-ray diffraction experiments performed at elevated temperatures, from 300 to 370 K, revealed unassingned layer of reflections appearing perpendicular to direction [001] below 320 K (Figure S1). The low intensity of the reflections is connected with the strong absorbtion of the X-ray radiation by the crystalline sample and the character of temperature-induced phase

(a) 300 K

(b) 310 K

transition.

Figure S1. The reconstruction of hk*0* layers of II-MHy₂PbI₄ collected at (a) 300 K and (b) 310 K in respect to phases reported in ref 24. A row of unassigned reflections were indicated for each image.

Ferroelectricity of phase IV-MHy₂Pbl₄

In order to understand the ferroelectric properties of VI-MHy₂PbI₄, we closely examine the ferroelectric phase III of MHy₂PbBr₄, which provides a structural and functional prototype. The study described by Mączka et al. (*Chem. Mater.* 2021, 33, 7, 2331–2342) reveals that a strong

dielectric response and spontaneous polarization in phase III of MHy₂PbBr₄ originates in the orientation of the MHy⁺ cations and the distortion of the polyanionic framework.

Although the both phases share isomorphic features and comparable octahedral distortions, the specific reorientation of cations in VI-MHy₂Pbl₄ suggests a unique redistribution of dipole moments, which is expected to be the primary contributor to its ferroelectric properties. Furthermore, the slight shifts in halogen positions in VI-MHy₂Pbl₄, could modulate the polarization field, reinforcing the effect induced by cation rotation. Consequently, the ferroelectric character of VI-MHy₂Pbl₄ obtained at high-pressure emerges from a multifaceted interaction of these structural charecteristics, mirroring the ferroelectric determinants of III-

MHy₂PbBr₄, yet exhibiting inherent distinctions owing to the halogen variation.

Figure S4. The unit-cell of of VI-MHy₂PbI₄ at 1.15 GPa with atom-specific color coding: lead (black), iodine (purple), carbon (grey), nitrogen (blue), and hydrogen (white) superimposed on structure of ambient-pressure III-MHy₂PbBr₄ (coloured yellow) with respect to the coordination sphere of the Pb²⁺ metal center.

Figure S2. The unit-cell projection of $II-MHy_2PbI_4$ projected along (a) [100]; (b) [010] and (c) [001] at 300K.

Figure S3. The H-bond pattern present in $II-MHy_2PbI_4$ at 300 K.

Bonds (Å)	0.22 GPa	1.00 GPa	
Ph1-I1	3.18900	3.17200	
	3.18900	3.17200	
Pb1-I1'	3 11300	3 09100	
Pb1-I2	0.14000	0.00100	
Pb1-I2 ⁱⁱ	3.11300	3.09100	
Ph1-13	3.18000	3.16000	
	3.18000	3.16000	
Pb1-I3 ^{III}	3 16067	3 14100	
d (Å)	0.10007	0.14100	
Δd	0.00115	0.00127	
i = x, y, 1 + z; ii	= -x, y, z; iii =	x, 1 + y, z	

Table S1. The Pb–I bond length in phase ${\bf V}$ at different pressures.

Bonds (Å)	1.30 GPa	1.70 GPa	2.10 GPa	2.64 GPa	3.00 GPa	
Pb1-I1	3.14300	3.14200	3.16200	3.17700	3.12500	Table S2.
Pb1-I1 ⁱ	3.14300	3.14200	3.16200	3.17700	3.12500	The distortions of
Pb1-I2	3.00900	3.09100	3.09600	3.02600	3.01900	the individual
Pb1-I2 ⁱⁱ	3.00900	3.09100	3.09600	3.02600	3.01900	Pbl ₆
Pb1-I3	3.15400	3.15700	3.11800	3.10600	3.13900	octahedra in
Pb1-I3 ⁱⁱⁱ	3.15400	3.15700	3.11800	3.10600	3.13900	phase VI at
d (Å)	3.10200	3.13000	3.12533	3.10300	3.09433	different
Δd	0.00434	0.00080	0.00075	0.00380	0.00287	pressures.

Bonds (Å)	3.30 GPa	3.74 GPa	4.20 GPa		3.30 GPa	3.74 GPa	4.20 GPa
Pb1A-I1A	3.09000	3.04100	3.09900	Pb1b-l1b	3.10000	3.10800	3.11200
Pb1A-I1A'	3.11900	3.13500	3.12600	Pb1b-l1b'	3.10800	3.12100	3.12300
Pb1A-I2A	2.98600	3.18100	2.96700	Pb1b-l2b	2.99200	3.29900	3.09300

Pb1A-I3A	3.05400	3.03500	3.05900	Pb1b-I3b	3.05400	3.06300	3.05400		
Pb1A-I3A"	3.14600	3.13500	3.18400	Pb1b-I3b"	3.16700	3.18200	3.20500		
Pb1A-I4A	2.98300	3.02600	3.12100	Pb1b-l4b	2.97500	2.89500	2.97200		
d	3.06300	3.09217	3.09267	d	3.06600	3.11133	3.09317		
Δd	0.00386	0.00364	0.00454	Δd	0.00450	0.01491	0.00499		
$i = 1 - x, -\frac{1}{2} + y, 1 - z; ii = -1 + x, y, z$									

Table S3. The bond length in phase VII at different pressures.

Table S4. Bond angle variance of the individual PbI_6 octahedra in phase **V** at different pressures.

Bond Angles (°)	0.22 GPa	1.00 GPa
I1-Pb1- I2	89.98	90.03
l1-Pb1- l 2 ⁱ	89.98	90.03
I1-Pb1-I3	90.24	96.80
I1-Pb1-I3 [#]	89.76	83.20
I3-Pb1-I1 ⁱⁱⁱ	89.98	90.03
I3-Pb1-I2	89.98	90.03
I3-Pb1-I2 ⁱ	90.24	96.80
I2-Pb1-I1 ⁱⁱⁱ	89.76	83.20
I2-Pb1-I3 ⁱⁱ	90.24	90.24
I1 ⁱⁱⁱ -Pb1-I2 ⁱ	89.76	89.76
I2 ⁱ -Pb1-I3 ⁱⁱ	90.24	90.24
11 ⁱⁱⁱ -Pb1-I3 ⁱⁱ	89.76	89.76
$\sigma(^{\circ})$	0.04204	16.83582
i= -x,y,z; ii= x,1+y	,z; iii= x,y,1+	۶

Table S5. Bond angle variance of the individual PbI_6 octahedra in phase VI at different pressures

Bond Angles (°)	1.30 GPa	1.70 GPa	2.10 GPa	2.64 GPa	3.00 GPa
I1-Pb1- I2	90.45	90.94	90.95	91.28	91.30
l1-Pb1- l 2 ⁱ	89.52	89.19	89.17	88.84	88.79
I1-Pb1-I3	96.73	101.13	101.24	101.98	102.55
I1-Pb1-I3 [#]	85.76	84.40	84.44	84.14	83.75
I3-Pb1-I1 ^{///}	90.45	90.94	90.95	91.28	91.30
I3-Pb1-I2	89.52	89.19	89.17	88.84	88.79
13-Pb1-l2 ⁱ	94.30	95.60	95.55	95.95	96.29
I2-Pb1-I1 ⁱⁱⁱ	83.21	78.86	78.77	77.93	77.40
I2-Pb1-I3 ⁱⁱ	90.17	90.38	90.37	90.33	90.20
I1 ⁱⁱⁱ -Pb1-I2 ⁱ	89.81	89.53	89.54	89.54	89.66
12 ⁱ -Pb1-I3 ⁱⁱ	90.17	90.38	90.37	90.33	90.20
I1 ⁱⁱⁱ -Pb1-I3 ⁱⁱ	89.81	89.53	89.54	89.54	89.66

σ(°) 11.71458 28.59150 28.91331 33.23240 36.50077 *i*= 1/2-x,1.5-y,z; *i*i= x,y,-1+z; *i*ii= x,1+y,z

Table S6. Bond angle variance of the individual PbI_6 octahedra in phase **VII** at different pressures.

Bond Angles (°)	3.30 GPa	3.74 GPa	4.20 GPa		3.30 GPa	3.74 GPa	4.20 GPa
I1A-Pb1A-I2A	88.84	87.82	95.10	I1B-Pb1B-I2B	92.82	94.72	87.17
I1A-Pb1A-I3A	79.61	78.56	93.94	I1B-Pb1B-I3B	102.64	105.57	108.61
I1A-Pb1A-I3A ⁱⁱ	83.53	83.89	82.89	I1B-Pb1B-I3B ⁱⁱ	97.21	97.28	88.20
I1A-Pb1A-I4A	92.95	91.45	88.12	I1B-Pb1B-I4B	90.86	88.64	91.04
I3A-Pb1A-I1A ⁱ	101.27	104.69	107.26	I3B-Pb1B-I1B ⁱ	77.52	75.14	94.43
I3A-Pb1A-I2A	86.14	91.58	85.15	I3B-Pb1B-I2B	95.96	100.58	84.20
I3A-Pb1A-I4A	98.73	93.69	85.58	I3B-Pb1B-I4B	87.21	84.20	87.41
I2A-Pb1A-I1A ⁱ	86.05	91.34	87.78	l2B-Pb1B-l1B ⁱ	86.53	84.55	88.54
I2A-Pb1A-I3A ⁱⁱ	86.36	87.25	88.08	I2B-Pb1B-I3B ⁱⁱ	87.99	86.99	99.32
I1Ai-Pb1A-I4A	92.04	89.08	88.51	I1B ⁱ -Pb1B-I4B	89.78	92.04	92.61
I4A-Pb1A-I3A ⁱⁱ	89.25	87.18	99.64	I4B-Pb1B-I3B ⁱⁱ	87.49	86.68	81.07

I1A ⁱ -Pb1A-I3A ⁱⁱ	94.88	92.85	76.20	I1B ⁱ -Pb1B-I3B ⁱⁱ	82.69	82.13	76.16
δ2	39.57974	39.38624	66.43555	δ2	45.03340	72.89371	71.43020
	i = 1-x						

Table S7. Compressibility related to crystallographic axes calculated for the phase V of MHy₂PbI₄ calculated in the range between 0.22 MPa and 1.00 GPa with Birch-Murnaghan coefficients.

A.v.a.a			C	irectio	tion Empirical parameters				
Axes K(IPa") oK(IPa"	on(TPa ⁻)	а	b	С	ε ₀	λ	P_{c}	V	
X ₁	36.9659	4.4405	-1.00	-0.00	0.00	-3.4584e-04	↓-4.0863e	02 0.0010	0.6343
X ₂	10.0949	4.0684	-0.00	1.00	-0.00	8.6470e-01	-7.5689e	01 -4.3481	0.0902
X ₃	6.5380	4.7743	0.00	0.00	1.00	1.6208e-03	-1.0584e	02 0.0010	1.0849
V	53.0693	2.8529							
Birch-	Murnagh	an Coeffic	ients						-

 B_0 (GPa) σB_0 (GPa) V_0 (Å³) σV_0 (Å³) B' $\sigma B'$ P_c (GPa) ^{2nd} 16.0973 0.7856 758.5795 3.6996 4 0.9872 0

Table S8. Compressibility related to crystallographic axes calculated for the phase VI of MHy₂PbI₄ calculated in the range between 1.30 GPa and 3.00 GPa with Birch-Murnaghan coefficients.

Avoo	$K(TDa-1) \sigma K(TDa-1)$	N	Direction	l	npirical paran	pirical parameters		
Axes K(IFA) OK(IFA) a	b	С	ε ₀	λ	P_{c}	v	
X1	21.1055 9.3120	-0.0000	-1.0000	0.0000	-7.8157e-04	-2.1715e-02	1.3000	0.9782
X2	76.5033 8.5744	-1.0000	0.0000	0.0000	3.0333e-02	-3.3787e-02	1.3000	1.7945
Х3	26.4176 4.5864	0.0000	0.0000	1.0000	1.4812e-02	-9.2386e-03	1.3000	2.0828
V	35.0186 1.2362							

Birch-Murnaghan Coefficients

 B_0 (GPa) σB_0 (GPa) V_0 (Å³) σV_0 (Å³) **2**nd 19.4616 1.7843 739.0541 5.4497 **3**rd 25.3861 17.2840 731.2967 19.7901

Table S9. Compressibility related to crystallographic axes calculated for the phase **VII** of MHy_2PbI_4 calculated in the range between 3.74 GPa and 4.2 GPa with Birch-Murnaghan coefficients.

Avos	K(TDo-1)	oK(TPa-1)	Direction				
AXES	N(IFa')	UN(TFAT)	а	b	с		
X ₁	40.9690	0.0000	0.2003	-0.0000	0.9797		
X ₂	-8.1643	0.0000	0.0000	1.0000	-0.0000		
X ₃	-11.5666	0.0000	-0.9997	0.0000	0.0255		
v	21.5603	0.0000					
Birch-Murnaghan Coefficients							
B	(GPa) σ	B _o (GPa)	V_{α} (Å ³)	σV _a (Å	(3)		

2nd 31.0261 2.9876 1415.0668 0.0000

Figure S5. The emission spectra of the compressed MHy_2PbI_4 crystals with the extracted intensity of PL peak (inset).

Figure S6. Nonlinear optical emissions obtained upon irradiation of MHy_2PbI_4 at 1.58 GPa with femtosecond laser pulses at different wavelengths (1350 – 1600 nm with 50 nm step). MPEL signals do not shift with wavelength change (a) while SHG signals are found at $\lambda/2$ each, see zoomed-in panel (b).

Figure S7. Nonlinear optical emissions obtained upon irradiation of MHy_2PbI_4 at 4.98GPa with femtosecond laser pulses at different wavelengths (1350 – 1600 nm with 50 nm step). MPEL signals do not shift with wavelength change while SHG signals are found at $\lambda/2$.

Table S10. Wavenumber intercepts at zero pressure (ω_0) and pressure coefficients ($\omega=d\alpha/dP$), obtained from fitting of the experimental data by linear functions, for the phases V, VI and VII of MHy₂PbI₄.

phase	V	phase	۷	Phase I	V	Assignment
0.07 - 1.18	5 GPa	1.15 –	3.10	3.10-4.	2	/
ω ₀ (cm ⁻¹)	α	ω_0 (cr	n ⁻¹)	ω ₀ (cm ⁻	¹)	
				2987.5	-6.7	v _s (CH ₃)
2954	2.9	2963.3	1.3	2965.6	2.3	v _s (CH ₃)
2673.1	0.5	2672.9	0.2	2673.7	-2.7	overtone
2465.6	0.8	2467	1.3	2467.9	7.0	overtone
1606.8	-1.1	1594.5	-1.3	1592.7	-9.0	δ(NH ₂)
1570.5	-4.0	1553.0	-3.8	1549.0	-19.0	δ(NH ₂ ⁺)
				1536.5	-76.7	δ(NH ₂ +)
1445.25	-1.1	1442.2	-0.8	1443.4	-2.0	$\delta_{as}(CH_3)$
				1431.9	-3.3	$\delta_{as}(CH_3)$
1408.95	-1.5	1405.2	-3.8	1404.4	-1.7	$\delta_{s}(CH_{3})$
				1211.1	5.0	ρ(CH ₃)+ω(NH ₂)
1200.0	-0.3	1193.3	6.2	1192.5	-3.3	ρ(CH ₃)+ω(NH ₂)
1134.0	-0.3	1137.5	-1.5	1137.7	-5.0	τ(NH ₂ ⁺)+ ρ(CH ₃)
1090.3	1.4	1097.6	0.2	1098.5	4.7	ρ(CH ₃)+τ(NH ₂ ⁺)
				1020.6	3.3	v _{as} (CNN)
976.95	0.1	989	-0.3	993.25	14.0	v _{as} (CNN)
877.66	5.0	891.7	3.0	894.7	13.0	v _s (CNN)
				862.8	10.0	v _s (CNN)
850.24	-5.4	836.7	-1.5	836.9	-0.7	ρ(NH ₂ +)
				481.9	-41.7	δ(CNN)
434.5	4.3	450.6	-0.3	452.3	7.0	δ(CNN)
		352.6	8.3	354.5	17.3	т(NH ₂)
		314.9	-0.2	310.8	-7.7	т(NH ₂)
209.3	16.9	259.1	1.2	262.1	17.3	L(MHy ⁺)+ T'(MHy ⁺)+ Pb-I stretch
165.6	0.6	182.9	6.3	188.5	23.7	L(MHy ⁺)+ T'(MHy ⁺)+ Pb-I stretch

* assignment is adopted from Maczka, M.; Ptak, M. *J. Phys.Chem.* C **2022**, *126*, 7991-7998. v_s, v_{as}, δ , ρ , ω and τ denote symmetric stretching, antisymmetric stretching, scissoring, rocking, wagging and twisting vibrations. L and T' correspond to the librational andtranslational modes, respectively.

 Table S11. Detailed crystallographic data for MHy₂PbI₄ at high-pressure.

Pressure		0.22 GPa	1.00 GPa	1.30 GPa	1.70 GPa	2.10 GPa	2.64 GPa
CCDC numbers Crystal system Space group		2298911 orthorhombic <i>Pmmn</i>	2298912 orthorhombic <i>Pmmn</i>	2298913 orthorhombic <i>Pmn</i> 2 ₁	2298914 orthorhombic <i>Pmn</i> 2 ₁	2298915 orthorhombic <i>Pmn</i> 2 ₁	2298916 orthorhombic <i>Pmn</i> 2 ₁
Unit cell dimensions	a (Å)	18.4404(15)	17.9087(11)	17.8170(11)	17.6111(2)	17.571(18)	17.24(3)
Unit cell angles	b (Å) c (Å) α (°) β (°)	6.35(9) 6.3926(14) 90 90	6.30(5) 6.3600(8) 90 90	6.2811(10) 6.22(6) 90 90	6.2619(2) 6.201(9) 90 90	6.1827(2) 6.2444(2) 90 90	6.1573(5) 6.2293(4) 90 90
γ (°) Volume (Å ³) Z/Z' Molecular volume (V/Z) Calculated density (g/cm ³) Absorption (mm ⁻¹)		90 748(10) 2/0.5 374	90 718(6) 2/0.5 359	90 696(7) 2/0.5 348	90 683.8(10) 2/0.5 341.9	90 678.4(7) 2/0.5 339.2	90 661.3(12) 2/0.5 330.65
		3.650 19.482	3.808 20.312	3.860 20.957	3.929 21.331	3.960 21.501	4.063 22.057
F(000) Crystal size (mm)		696 0.175 × 0.131 × 0.03	668 0.175 × 0.131 × 0.03	696 0.173 × 0.131 × 0.03	696 0.175 × 0.131 × 0.03	696 0.175 × 0.131 × 0.03	696 0.175 × 0.131 × 0.03
2θ-range for data collection (°)		6.746 to 52.49	6.798 to 52.57	6.878 to 53.60	6.506 to 54.828	6.59 to 55.296	9.31 to 52.296
Min/max indices: <i>h</i> , <i>k</i> , <i>l</i>		-5 ≤ h ≤ 5, -6 ≤ k ≤ 7, -7 ≤ l ≤ 7	-5 ≤ h ≤ 5, -6 ≤ k ≤ 7, -7 ≤ l ≤ 7	-5 ≤ h ≤ 5, -7 ≤ k ≤ 7, -6 ≤ l ≤ 7	-5 ≤ h ≤ 5, -8 ≤ k ≤ 8, -8 ≤ l ≤ 7	-4 ≤ h ≤ 4, -8 ≤ k ≤ 7, -8 ≤ l ≤ 7	-4 ≤ h ≤ 4, -7 ≤ k ≤ 7, -7 ≤ l ≤ 7
Reflect. Collected/unique Data/restrains/parameter s		1351/236	2141/252	1298/363	3891/511	3249/434	2880/354
		236/90/41	252/45/41	363/70/57	511/46/56	434/45/57	354/71/56
Goodness-of-fit on Final R1/wR2 (I>20 R ₁ /wR ₂ (all data)	F ² 51)	1.149 0.0844/0.2146 0.0936/0.2270	1.192 0.0425/0.0947 0.0511/0.0964	1.011 0.0720/0.1613 0.0873/0.1734	1.154 0.0276/0.0674 0.0273/0.0678	1.132 0.0244/0.0484 0.0251/0.0490	1.124 0.0491/0.1084 0.0528/0.1124
Largest diff. peak/hole (e.Å ⁻³)		1.28/-1.07	0.87/-0.69	1.36/-1.01	0.82/-0.77	0.71/-0.60	1.22/-1.28

 $w=1/(\sigma^2 F_o^2 + w_1^2 * P^2 + w_2 * P)$, where $P=(Max(F_o^2, 0) + 2 * Fc^2)$

 Table S12. Detailed crystallographic data for MHy₂PbI₄ at high-pressure.

Pressure		3.00 GPa	3.30 GPa	3.74 GPa	4.20 GPa	
CCDC numbers Crystal system Space group		2298917 orthorhombic <i>Pmn</i> 2 ₁	2298918 monoclinic <i>P</i> 2 ₁	2298919 monoclinic <i>P</i> 2 ₁	2298920 monoclinic <i>P</i> 2 ₁	
Unit cell dimensions	a (Å)	17.19(2)	6.1212(3)	6.0985(2)	6.1302(5)	
Unit cell angles	b (Å) c (Å) α (°) β (°) v (°)	6.2150(3) 6.1341(3) 90 90 90	12.3727(7) 17.150(5) 90 90.095(13) 90	12.3284(4) 17.049(5) 90 90.097(12) 90	12.3747(10) 16.73(3) 90 90.30(3) 90	
Volume (Å ³) Z/Z' Molecular volume (V/Z)		655.3(8) 2/0.5 327.65	1298.9(4) 4/2 324.725	1281.8(4) 4/2 320.45	1269(2) 4/2 317.25	
Calculated density		4.100	4.137	4.192	4.234	
Absorption (mm ⁻¹) F(000)		22.259 696	22.459 1392	22.759 1392	22.988 1392	
Crystal size (mm)		0.19 x 0.16 x 0.05	0.17 x 0.13 x 0.03	0.17 x 0.13 x 0.03	0.21 x 0.13 x 0.015	
2θ-range for data collection (°)		9.338 to 52.31	6.586 to 52.628	6.61 to 53.206	6.586 to 52.706	
Min/max indices: h, k, l		-3 ≤ h ≤ 3, -7 ≤ k ≤ 7, -7 ≤ l ≤ 7	-7 ≤ h ≤ 7, -15 ≤ k ≤ 15, -4 ≤ l ≤ 4	-7 ≤ h ≤ 7, -15 ≤ k ≤ 15, -3 ≤ l ≤ 3	-7 ≤ h ≤ 7, -15 ≤ k ≤ 15, -5 ≤ l ≤ 4	
Reflect. Collected/unique Data/restrains/parameter		2388/309	5966/974	6025/926	6862/1331	
		309/85/56	974/9/43	926/1/43	1331/1/47	
Goodness-of-fit on Final R1/wR2 (I>20 R ₁ /wR ₂ (all data)	F ² 51)	1.186 0.0435/0.0829 0.0469/0.0862	1.115 0.1556/0.2915 0.1887/0.3139	1.041 0.1645/0.3629 0.1789/0.3752	1.101 0.1730/0.3591 0.1849/0.3691	
Largest diff. peak/hole (e.Å ⁻³)		0.91/-0.97	2.37/-2.72	2.89/-3.95	3.92/-4.04	

 $w=1/(\sigma^2 F_o^2 + w_1^2 * P^2 + w_2 * P)$, where $P=(Max(F_o^2, 0) + 2 * Fc^2)$

 Table S13. Detailed crystallographic data for MHy₂Pbl₄ at high-temperature.

Temperature		300 K	310 K	320 K	330 K	340 K	360 K	370 K
CCDC numbers Crystal system Space group		2298904 orthorhombic <i>Pmcn</i>	2298905 orthorhombic <i>Pmcn</i>	2298906 orthorhombic <i>Pmmn</i>	2298907 orthorhombic <i>Pmmn</i>	2298908 orthorhombic <i>Pmmn</i>	2298909 orthorhombic <i>Pmmn</i>	2298910 orthorhombic <i>Pmmn</i>
Unit cell dimensions	a (Å)	18.684(4)	18.7116(5)	18.7487(6)	18.7824(6)	18.8229(6)	18.9231(9)	18.9775(10)
Unit cell angles	b (Å) c (Å) α (°) β (°) ν (°)	6.3720(13) 12.769(3) 90 90 90	6.3719(2) 12.7687(3) 90 90 90	6.3729(2) 6.3843(2) 90 90 90	6.3740(2) 6.3845(2) 90 90 90	6.3753(2) 6.3839(2) 90 90 90	6.3804(2) 6.3828(2) 90 90 90	6.3842(2) 6.3817(3) 90 90 90
Volume (Å ³) Z/Z' Molecular volume ((V/Z)	1520.2(5) 4/0.5 380.05	1522.39(7) 4/0.5 380.59	762.82(4) 2/0.25 381.41	764.35(4) 2/0.25 382.175	766.08(4) 2/0.25 383.04	770.64(5) 2/0.25 385.32	773.18(6) 2/0.25 386.59
Calculated density (g/cm ³)		3.535	3.530	3.522	3.514	3.446	3.425	3.414
Absorption (mm ⁻¹) F(000)		19.190 1392	19.162 1392	19.121 696	19.086 682	19.038 668	18.925 668	18.863 668
Crystal size (mm)		0.15 x 0.10 x 0.08	0.15 x 0.10 x 0.08	0.15 x 0.10 x 0.08	0.15 x 0.10 x 0.08	0.15 x 0.10 x 0.08	0.15 x 0.10 x 0.08	0.15 x 0.10 x 0.08
2θ-range for data collection (°)		6.382 to 58.168	6.382 to 58.168	6.382 to 57.694	6.382 to 57.948	6.382 to 57.874	6.384 to 57.734	6.384 to 58.27
Min/max indices: <i>h</i> , <i>k</i> , <i>l</i>		-25 ≤ h ≤ 24, -8 ≤ k ≤ 8, -16 ≤ l ≤ 17	-24 ≤ h ≤ 25, -8 ≤ k ≤ 8, -16 ≤ l ≤ 17	-24 ≤ h ≤ 25, -8 ≤ k ≤ 8, -8 ≤ l ≤ 8	-24 ≤ h ≤ 25, -8 ≤ k ≤ 8, -8 ≤ l ≤ 8	-24 ≤ h ≤ 25, -8 ≤ k ≤ 8, -8 ≤ l ≤ 8	-24 ≤ h ≤ 25, -8 ≤ k ≤ 8, -8 ≤ l ≤ 8	-26 ≤ h ≤ 24, -8 ≤ k ≤ 8, -8 ≤ l ≤ 8
Reflect. Collected/unique		13638/1943	13671/1945	7002/1058	7079/1061	7032/1057	7005/1056	6997/1050
Data/restrains/paramete		1943/24/57	1945/36/57	1058/41/47	1061/44/46	1057/3/49	1056/50/46	1050/46/49
Goodness-of-fit or Final R1/wR2 (I>2 R ₁ /wR ₂ (all data)	F ² 51)	1.005 0.0396/0.0806 0.0855/0.0976	0.985 0.0403/0.0827 0.0874/0.1005	1.105 0.0384/0.0845 0.0478/0.0883	1.116 0.0444/0.1035 0.0537/0.1080	1.188 0.0458/0.1057 0.0567/0.1106	1.087 0.0613/0.1523 0.0745/0.1613	1.134 0.0741/0.1795 0.0984/0.1946
Largest diπ. peak/h (e.Å- ³)	lole	1.93/-1.36	1.87/-1.17	2.07/-1.09	1.80/-1.07	1.75/-1.08	4.17/-1.21	5.04/-1.68

 $w=1/(\sigma^2 F_0^2 + w_1^2 * P^2 + w_2^2 * P)$, where $P=(Max(F_0^2, 0) + 2^* Fc^2)$