Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

J. Mater. Chem A.

Supporting Information

Achieving Ultrahigh Energy Storage Density at Low Operating Fields in Lead Hafnate-Based Novel Perovskite Solid Solutions

Vidhi Chauhan, Bi-Xia Wang, Alexei A. Bokov and Zuo-Guang Ye*

Department of Chemistry and 4D LABS, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada

Figure S.2. (a-e) Temperature dependencies of loss tangent of the $(1-x)PbHfO_3$ -xAgNbO₃ ceramics measured at various frequencies : (a) x = 0.01, (b) x = 0.02, (c) x = 0.025, (d) x = 0.027 and (e) x = 0.03.

The temperature and frequency dependencies of loss tangent of the as-sintered (1-x)PbHfO₃-xAgNbO₃ ceramics are presented in Figure S-2 in logarithmic scale. Two sharp anomalies are clearly visible in the loss tangent data, which represent T_{C1} and T_{C2} .

Figure S.3. (a-e) Variation of Imaginary part of permittivity (ε") as a function of temperature for various compositions of the (1-x)PbHfO₃-xAgNbO₃ ceramics.

Figure S.4. (a-c) Rietveld refinement results of the 0.973PbHfO₃-0.027AgNbO₃ ceramics measured at 195 °C by using different structural models: (a) Ibam, (b) Pba2 and (c) Pbcm.

Temperatur	Space	Ions	Posit	ional Coordin	ates	Cell Parameters
e	group		Х	Y	Ζ	(Å)
25 °C	Pbam	$Pb^{2+}(1)$	0.7157	0.1303	0.0000	a = 5.8383 (1)
		$Pb^{2+}(2)$	0.7136	0.1247	0.5000	b = 11.6901(2)
		Hf^{4+}	0.2449	0.1244	0.2512	c = 8.1911(1)
		$O^{2-}(1)$	0.2859	0.0982	0.0000	
		$O^{2-}(2)$	0.2681	0.1532	0.5000	
		O ²⁻ (3)	0.0229	0.2568	0.2222	
		O ²⁻ (4)	0.0000	0.5000	0.2880	
		$O^{2-}(5)$	0.0000	0.0000	0.2692	
		$Ag^{1+}(1)$	0.7157	0.1303	0.0000	
		$Ag^{1+}(2)$	0.7136	0.1247	0.5000	
		Nb ⁵⁺	0.2449	0.1244	0.2512	
105 °C	Imma	Pb^{2+}	0.0120 (7)	0.0410 (4)	0.0330 (5)	a = 5.8431 (3)
		Hf^{4+}	0.0220 (5)	0.008 (3)	-0.0070 (4)	b = 8.2110(2)
		$O^{2-}(1)$	0.610 (3)	0.2500 (8)	-0.0200 (9)	c = 5.8379(2)
		$O^{2-}(2)$	-0.153 (3)	0.020(1)	0.000 (3)	
		Ag^{1+}	0.0120 (7)	0.0410 (4)	0.0330 (5)	
		Nb ⁵⁺	0.0220 (5)	0.0088 (30)	-0.0070 (4)	
175 °С	Imma	Pb ²⁺	0.0100 (7)	0.0620 (3)	0.0220 (7)	a = 5.8416 (2)
		Hf^{4+}	0.0250 (6)	0.003 (3)	-0.0010 (5)	b = 8.2381(2)
		$O^{2-}(1)$	0.01800	0.00900	0.00140	c = 5.8362(2)
		$O^{2-}(2)$	0.01800	0.03100	0.01000	
		Ag ¹⁺	0.0100 (7)	0.0620(3)	0.0220 (7)	
		Nb ⁵⁺	0.0250 (6)	0.003 (3)	-0.0010 (5)	

Table S.1 Refined structural parameters of 0.973PbHfO₃-0.027AgNbO₃ ceramics at different temperatures

195 °C	Imma	$\begin{array}{c} Pb^{2+} \\ Hf^{4+} \\ O^{2-} (1) \\ O^{2-} (2) \\ Ag^{1+} \\ Nb^{5+} \end{array}$	0.040 (1) 0.0230 (8) 0.0180 0.0180 0.0400 (10) 0.0230 (8)	0.056 (1) 0.0120 (9) 0.0090 0.0310 0.0560 (10) 0.0120 (9)	0.0150 (7) -0.0030 (6) 0.0014 0.0110 0.0150 (7) -0.0030 (6)	a = 5.8430 (5) b = 8.2522 (5) c = 5.8366 (3)
205 °C	Imma	$\begin{array}{c} Pb^{2+} \\ Hf^{4+} \\ O^{2-} (1) \\ O^{2-} (2) \\ Ag^{1+} \\ Nb^{5+} \end{array}$	0.0168 0.0140 (9) -0.9500 (9) -0.7700 (5) 0.0168 0.0140 (9)	0.0291 0.013 (1) 0.5300 (9) -0.2200 (4) 0.0291 0.013 (1)	0.0201 0.0000 (7) 0.5100 (9) 0.5600 (6) 0.0201 0.0000 (7)	a = 5.8428 (4) b = 8.2552 (7) c = 5.8363 (4)