Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Catalytic ignition of N(CN)2⁻ ionic liquid-H2O2 with zero-

dimensional Cu-MOFs

Qing Cheng^{ab}, Yuan Yao^{bc}, Peihao Dou^b, Long Liu^c, Yingying Cao^{*a}, Yanqiang

Zhang*abc

- ^a College of Chemistry and Molecular Sciences, Henan University, Mingli Road North 379, 450046 Zhengzhou, China. E-mail: yqzhang@ipe.ac.cn.
- ^b Zhengzhou Institute of Emerging Industrial Technology, East Third Ring Road and Jincheng Avenue Intersection East 300 meters, 450000, Zhengzhou, China.
- ^c Institute of Process Engineering, Chinese Academy of Sciences, Beiertiao 1#, Zhongguancun, Haidian District, 100190 Beijing, China.

Content

Table S1	Heats of formation of MOFs 1-4
Table S2	Crystallographic data and structure refinement details for MOFs 1-45
Table S3	Selected bond lengths and bond angles of MOF 1
Table S4	Selected bond lengths and bond angles of MOF 2
Table S5	Selected bond lengths and bond angles of MOF 3 7
Table S6	Selected bond lengths and bond angles of MOF 47
Fig. S1	Angles of the plane formed by the para-tetrazole ring in 1 (a), and 2 (b)9
Fig. S2	Structures of H_4TTP single molecule (a) and stacking diagram (b)9
Fig. S3	FT-IR spectra of MOFs 1-49
Fig. S4	FT-IR spectra of H_4 TTP, methacrylic acid and MOFs $1/4$ 10
Fig. S5	PXRD patterns for MOFs 1-4
Fig. S6	ΔH_f of MOFs 3/4 + [BMIM]N(CN) ₂ 11
Fig. S7	I_{sp} of MOFs $3/4 + [BMIM]N(CN)_2$
Fig. S8	Decomposition temperatures (a) and variation rule (b) of MOF $3 + [BMIM]N(CN)_212$
Fig. S9	Decomposition temperatures (a) and variation rule (b) of MOF $4 + [BMIM]N(CN)_212$
Fig. S10	UV-vis spectra of MOF 3 + [BMIM]N(CN) ₂ and its absorbance with time at 362 nm12
Fig. S11	The charge density difference plots for MOFs 1 (a) and 4 (b) The green and blue areas
	denote the electron accumulation and depletion regions, respectively. The C, N, O, Cu,
	and H atoms are represented by gold, blue, red, silver white balls, respectively13
Fig. S12	EPR spectra (a) DMPO-·OH and (b) DMPO-·OOH in MOF 1 + [BMIM]N(CN) ₂ +
	H ₂ O ₂ system
Fig. S13	EPR spectra (a) DMPO- \cdot OH and (b) DMPO- \cdot OOH in MOF 2 + [BMIM]N(CN) ₂ + H ₂ O ₂
	system
Fig. S14	EPR spectra (a) DMPO-·OH and (b) DMPO-·OOH in MOF $3 + [BMIM]N(CN)_2 + H_2O_2$
	system
Fig. S15	DFT calculations of H ₂ O ₂ catalysed by MOF 114
Fig. S16	Proposed catalytic mechanism of MOF 1 as catalyst15

Computational Details:

characterization of single X-ray diffraction

Data collections were performed using ϕ and ω scan. Non-hydrogen atoms located from the difference Fourier maps were refined anisotropically by fullmatrix least-squares on F^2 , using SHELXS-97. All hydrogen atoms were included in the calculated positions and refined isotropically using a riding model. Determinations of the crystal system, orientation matrix, and cell dimensions were performed according to the established procedures. Lorentz polarization and multiscan absorption correction were applied. All calculations were performed using SHELXL 97 and PLATON 99. The crystallographic data for **1-5** are listed in Table 1. Moreover, the selected bonds distances and bond angles are summarized in Supporting Information Table S1.

DFT calculations

Density function theory (DFT) calculations were carried out using Gaussian 16 programs¹ throughout this manuscript. Geometric optimizations of the reactants, transition states, and products were performed using TPSSh hybrid function². The standard 6-31G(d,p) basis set³⁻⁵ for H, C, N and O was used. For the Cu atoms, the SDD basis set and its corresponding effective core potential⁶ was used. Harmonic vibration frequency calculations were performed for all stationary points to confirm them as a local minima or transition state. The intrinsic reaction coordinate (IRC) scheme⁷⁻⁸ was applied for the calculations of the reactants and products. Gibbs free energy (G) was calculated using Shermo software⁹.

Heats of Formation

The heat of formation (ΔH_f) of MOFs were calculated using the following reaction¹⁰:

$$Cu(s) + C(s) + H_2(g) + O_2(g) + N_2(g) \rightarrow C_a H_b C u_c O_d N_e$$

These calculations were performed by using CP2K 2023.1¹¹. Hybrid function PBE0 function¹² combined with Grimme D3 dispersion correction¹³ were employed. And the plane wave energy cutoff was set as 400 eV. All structure was first optimized under the DZVP-MOLOPT-SR-GTH basis set¹⁴, and then the single point energy was calculated under the pob-TZVP basis set¹⁵. The optimization was considered to converge when the following criteria were met: a maximum energy change of 10⁻⁶ eV per atom and a maximum force on atom of 0.00045 eV·Å⁻¹. The input files were obtained with the assistance of the Multiwfn software¹⁶.

The calculation results of the catalysts are shown in Table S1.

Sample	MOF 1	MOF 2	MOF 3	MOF 4
ΔH_f (solid, 298K, kJ·mol ⁻¹)	-3642.4	-3575.1	-8454.3	-9802.4

Table S1 Heats of formation of MOFs 1-4.

To the MOF + [BMIM]N(CN)₂ mixtures, the heat of formations were calculated through Equations 1-4. MOF: Fuel = x: y = 0.99:0.01, 0.97:0.03, 0.95:0.05, 0.93:0.07, 0.91:0.09, 0.89:0.11, 0.87:0.13, 0.85:0.15. The ΔH_f of [BMIM]N(CN)₂ was obtained from the literature¹⁷.

$$n_{MOF} = \frac{x}{M_{MOF}} \tag{1}$$

$$n_{IL} = \frac{y}{M_{IL}} \tag{2}$$

$$n_{sum} = n_{MOF} + n_{IL} = \frac{x}{M_{MOF}} + \frac{y}{M_{IL}}$$
(3)

$$\Delta f H_{mix} = \frac{n_{MOF}}{n_{sum}} * \Delta f H_{MOF} + \frac{n_{IL}}{n_{sum}} * \Delta f H_{IL}$$
⁽⁴⁾

References

- Gaussian 16, Revision C.01, M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, G. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. Janesko, R. Gomperts, B. Mennucci, H. Hratchian, J. Ortiz, A. Izmaylov, J. Sonnenberg, Y. Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A.Petrone, T. Henderson, D. Ranasinghe, V. Zakrzewski, J. Gao, N. Rega, G. Zheng, W.Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. Montgomery, J. Peralta, F. Ogliaro, M. Bearpark, J. Heyd, E. Brothers, K. Kudin, V. Staroverov, T. Keith, R.Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. Burant, S. Iyengar, J. Tomasi, M.Cossi, J. Millam, M. Klene, C. Adamo, R. Cammi, J. Ochterski, R. Martin, K.Morokuma, O. Farkas, J. Foresman, D. Fox, Inc. Gaussian,, Wallingford CT, 2016.
- 2 V. Staroverov, G. Scuseria, J. Tao, and J. Perdew, J. Chem. Phys., 2003, 119, 12129-12137.
- 3 W. Hehre, R. Ditchfield and J. Pople, J. Chem. Phys., 1972, 56, 5255-5257.
- 4 M. Francl, W. Pietro, W. Hehre, J. Binkley, M. Gordon, D. DeFrees and J. Pople, J. Chem. Phys., 1982, 77, 3654-3665.
- 5 T. Clark, J. Chandrasekhar and P. Schleyer, J. Comp. Chem., 1983, 4, 294-301.
- 6 M. Dolg, U. Wedig, H. Stoll, and H. Preuss, J. Chem. Phys., 1987, 86, 866-872.
- 7 K. Fukui, J. Phys. Chem., 1970, 74, 4161-4163.
- 8 K. Fukui, Acc. Chem. Res., 1981, 14, 363-368.
- 9 T. Lu, Q. Chen, Comput. Theor. Chem., 2021, 1200, 113249.
- 10 O. Jobin, C. Mottillo, H. Titi, Chem. Sci., 2022, 13, 3424-3436.

- 11 T. Kühne, M. Iannuzzi, B. Del, J. Chem. Phys., 2020, 152. 194103.
- 12 C Adamo, V Barone. J. Chem. Phys., 1999, 110, 6158-6170.
- 13 S. Grimme, J. Antony, S. Ehrlich, J. Chem. Phys., 2010, 132. 154104.
- 14 V. Vondele, J. Hutter, J. Chem. Phys., 2007, 127. 114105.
- 15 M. Peintinger, D. Oliveira, T. Bredow, J. Comput. Chem., 2013, 34, 451-459.
- 16 T. Lu, F. Chen, J. Comput. Chem., 2012, 33, 580-592.
- A. Thomas, K. Stober, R. Otaibi, 52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016.

Table S2 Crystallographic data and structure refinement details for MOFs 1-4

MOF	1	2	3	4	
formula	$C_8H_{12}Cu_2N_{22}O_{2.5}$	$C_8H_{12}Cu_2N_{22}O_{2.4}$	$C_{14}H_{20}Cu_2$	$C_{18}H_{28}Cu_2O_{10}$	
fw	583.48	581.88	475.40	531.5	
T/K	118.1	123.0	273	273	
crystal system	orthorhombic	orthorhombic	monoclinic	monoclinic	
space group	P2na	Pbcn	$P 2_1/n$	C 2/c	
<i>a</i> (Å)	13.4957(5)	15.0819(19)	7.6004(4)	37.398(3)	
<i>b</i> (Å)	9.9441(6)	13.4307(14)	9.0452(5)	6.9621(4)	
<i>c</i> (Å)	15.0536(7)	9.9113(14)	14.0935(9)	18.7788(14)	
α (deg)	90	90	90	90	
β (deg)	90	90	97.329(2)	97.255(3)	
γ (deg)	90	90	90	90	
$V(Å^3)$	2020.24(16)	2007.6(4)	960.97(10)	4850.3(6)	
Ζ	4	4	2	8	
ρ (g·cm ⁻³)	1.918	1.925	1.643	1.456	
abs coeff (mm ⁻¹)	2.172	2.185	2.260	1.799	
F (000)	1168	1165	484.0	2192.0	
GOF	1.043	1.014	0.943	1.089	
data/restraints/parame	3441/19/326	1949/6/159	3809/0/139	5579/376/277	
$R_I(I > 2\sigma(I))^a$	0.0438	0.0934	0.0292	0.0529	
$wR_2(I > 2\sigma(I))^b$	0.0963	0.2067	0.0789	0.1439	
${}^{a}R_{I} = \sum F_{0} - F_{c} / \sum F_{0} . \ {}^{b}wR_{2} = \{\sum [w(F_{0}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{0}^{2})^{2}] \}^{1/2}.$					

Atom	Length (Å)	Atom	Length (Å)	
Cu1-N18	2.013(7)	Cu2-N16 ²	2.434(6)	
Cu1-N22	1.997(8)	Cu2-N10	1.998(7)	
Cu1-N4 ¹	2.292(7)	Cu2-N19	2.011(7)	
Cu1-N14	2.031(7)	Cu2-N20	2.006(7)	
Cu1-N21	2.031(8)	N4-Cu1 ¹	2.292(7)	
Cu2-N6	2.013(8)	N16-Cu2 ²	2.434(6)	
Atom	Angle (°)	Atom	Angle (°)	
N18-Cu1-N41	96.8(3)	N19-Cu2-N16 ²	83.2(3)	
N18-Cu1-N14	85.5(3)	N20-Cu2-N6	173.9(3)	
N18-Cu1-N21	169.1(3)	N20-Cu2-N16 ²	89.8(3)	
N22-Cu1-N18	91.7(3)	N20-Cu2-N19	92.0(3)	
N22-Cu1-N41	92.5(3)	N5-N6-Cu2	122.3(5)	
N22-Cu1-N14	171.1(3)	C1-N6-Cu2	132.0(5)	
N22-Cu1-N21	92.8(3)	N17-N18-Cu1	121.5(5)	
N14-Cu1-N4 ¹	96.2(3)	C7-N18-Cu1	131.7(5)	
N14-Cu1-N21	88.5(3)	N3-N4-Cu1 ¹	124.1(5)	
N21-Cu1-N41	93.0(3)	N5-N4-Cu1 ¹	125.3(5)	
N6-Cu2-N16 ²	94.5(3)	N15-N16-Cu2 ²	127.8(6)	
N10-Cu2-N6	85.7(3)	N17-N16-Cu2 ²	121.9(4)	
N10-Cu2-N16 ²	93.9(3)	C5-N14-Cu1	133.7(7)	
N10-Cu2-N19	176.6(3)	N9-N10-Cu2	121.0(5)	
N10-Cu2-N20	89.8(3)	C4-N10-Cu2	134.9(7)	
N19-Cu2-N6	92.6(3)			
Noted: ¹ +X,-1-Y,-1-Z; ² +X,-2-Y,-1-Z				

Table S3 Selected bond lengths and bond angles of MOF 1 $\,$

Table S4 Selected bond lengths and bond angles of MOF ${\bf 2}$

Atom	Length (Å)	Atom	Length (Å)
Cu1-N9 ¹	2.013(8)	Cu1-N1 ¹	1.987(9)
Cu1-N7 ²	2.329(7)	N9-Cu1 ¹	2.013(8)
Cu1-N2	2.004(8)	N7-Cu1 ²	2.329(7)
Cu1-N10	2.008(7)		
Atom	Angle (°)	Atom	Angle (°)
N9 ¹ -Cu1-N7 ²	96.5(3)	N11-Cu1-N2	174.5(4)
N2-Cu1-N91	84.7(3)	N11-Cu1-N10	92.4(4)
N2-Cu1-N7 ²	96.1(3)	N8-N9-Cu11	122.3(6)
N2-Cu1-N10	90.0(3)	C4-N9-Cu1 ¹	131.8(6)
N10-Cu1-N91	170.4(3)	N8-N7-Cu1 ²	122.7(6)
N10-Cu1-N7 ²	92.0(3)	N6-N7-Cu1 ²	126.2(6)
N11-Cu1-N9 ¹	92.2(3)	C1-N2-Cu1	133.5(7)
N11-Cu1-N7 ²	88.8(4)	N3-N2-Cu1	120.8(6)
	Noted: 1-X,2-Y	∕,-Z; ² -X,+Y,-1/2-Z	

Atom	Length (Å)	Atom	Length (Å)	
Cu1-Cu1 ¹	2.6201(3)	Cu1-O4	1.9678(11)	
Cu1-O1 ¹	1.9561(11)	Cu1-O5	2.1812(12)	
Cu1-O2	1.9473(11)	O1-Cu1 ¹	1.9561(11)	
Cu1-O3 ¹	1.9831(11)	O3-Cu1 ¹	1.9831(11)	
Atom	Angle (°)	Atom	Angle (°)	
O1 ¹ -Cu1-Cu1 ¹	81.81(4)	O3 ¹ -Cu1-O5	91.87(5)	
O1 ¹ -Cu1-O3 ¹	89.60(5)	O4-Cu1-Cu1 ¹	85.68(3)	
O11-Cu1-O4	90.17(5)	O4-Cu1-O31	168.77(5)	
O11-Cu1-O5	93.20(5)	O4-Cu1-O5	99.35(5)	
O2-Cu1-Cu1 ¹	86.94(4)	O5-Cu1-Cu1 ¹	172.96(5)	
O2-Cu1-O1 ¹	168.75(5)	C3-O1-Cu1 ¹	125.33(11)	
O2-Cu1-O31	89.38(5)	C3-O2-Cu11	120.14(10)	
O2-Cu1-O4	88.66(5)	C6-O3-Cu11	123.90(9)	
O2-Cu1-O5	98.03(5)	C6-O4-Cu11	122.18(10)	
O3 ¹ -Cu1-Cu1 ¹	83.17(3)	C7-O5-Cu11	124.68(12)	
Noted: 11-X,1-Y,1-Z				

Table S5 Selected bond lengths and bond angles of MOF $\mathbf{3}$

Table S6 Selected bond lengths and bond angles of MOF 4 $\,$

Atom	Length (Å)	Atom	Length (Å)
Cu1-Cu1 ¹	2.5835(8)	Cu2-Cu2 ²	2.5823(8)
Cu1-O1	1.944(3)	Cu2-O6	1.953(3)
Cu1-O2 ¹	1.955(3)	Cu2-O7 ²	1.962(3)
Cu1-O3	1.957(3)	Cu2-O8	1.959(3)
Cu1-O4 ¹	1.947(3)	Cu2-O9 ²	1.952(3)
Cu1-O5	2.135(3)	Cu2-O10	2.136(3)
O2-Cu1 ¹	1.955(3)	$O7-Cu2^2$	1.962(3)
O4-Cu1 ¹	1.947(3)	O9-Cu2 ²	1.952(3)
Atom	Angle (°)	Atom	Angle (°)
O1-Cu1-Cu1 ¹	84.65(9)	O6-Cu2-Cu2 ²	84.41(9)
O1-Cu1-O2 ¹	168.78(13)	O6-Cu2-O7 ²	168.64(12)
O1-Cu1-O3	88.80(15)	O6-Cu2-O8	89.84(15)
O1-Cu1-O4 ¹	90.96(13)	O6-Cu2-O10	95.95(12)
O1-Cu1-O5	96.23(13)	O7 ² -Cu2-Cu2 ²	84.34(9)
O2 ¹ -Cu1-Cu1 ¹	84.28(10)	O7 ² -Cu2-O10	95.35(12)
O2 ¹ -Cu1-O3	88.30(17)	O8-Cu2-Cu2 ²	85.35(10)
O21-Cu1-O5	94.85(13)	O8-Cu2-O7 ²	87.69(16)
O3-Cu1-Cu1 ¹	84.55(9)	O8-Cu2-O10	96.70(13)
O3-Cu1-O5	95.81(13)	O9 ² -Cu2-Cu2 ²	83.61(9)
O4 ¹ -Cu1-Cu1 ¹	83.95(8)	O9 ² -Cu2-O6	89.86(14)
O4 ¹ -Cu1-O2 ¹	89.72(15)	O9 ² -Cu2-O7 ²	90.45(15)
O41-Cu1-O3	168.47(12)	O9 ² -Cu2-O8	168.93(13)

O41-Cu1-O5	95.67(12)	O9 ² -Cu2-O10	94.33(13)	
O5-Cu1-Cu1 ¹	179.05(11)	O10-Cu2-Cu2 ²	177.91(10)	
C4-O1-Cu1	123.3(3)	C13-O6-Cu2	123.6(3)	
C4-O2-Cu1 ¹	122.8(3)	C13-O7-Cu2 ²	123.3(3)	
C8-O3-Cu1	123.1(3)	C17-O8-Cu2	122.3(3)	
C8-O4-Cu1 ¹	124.3(2)	C17-O9-Cu2 ²	124.8(3)	
C9-O5-Cu1	127.2(3)	C18-O10-Cu2	125.4(3)	
Noted: ¹ 2-X,1-Y,1-Z; ² 3/2-X,3/2-Y,1-Z				

Fig. S1 Angles of the plane formed by the para-tetrazole ring in 1 (a), and 2 (b)

Fig. S2 Structures of H₄TTP single molecule (a) and stacking diagram (b)

Fig. S3 FT-IR spectra of MOFs 1-4

Fig. S4 FT-IR spectra of H_4TTP , methacrylic acid and MOFs 1/4

Fig. S8 Decomposition temperatures (a) and variation rule (b) of MOF $3 + [BMIM]N(CN)_2$

Fig. S9 Decomposition temperatures (a) and variation rule (b) of MOF 4 + [BMIM]N(CN)₂

Fig. S10 UV-vis spectra of MOF $3 + [BMIM]N(CN)_2$ and its absorbance with time at 362 nm

Fig. S11 The charge density difference plots for MOFs **1** (a) and **4** (b) The green and blue areas denote the electron accumulation and depletion regions, respectively. The C, N, O, Cu, and H atoms are represented by gold, blue, red, silver white balls, respectively

Fig. S12 EPR spectra (a) DMPO-·OH and (b) DMPO-·OOH in MOF $1 + [BMIM]N(CN)_2 + H_2O_2$ system

Fig. S13 EPR spectra (a) DMPO-·OH and (b) DMPO-·OOH in MOF $2 + [BMIM]N(CN)_2 + H_2O_2$ system

Fig. S14 EPR spectra (a) DMPO- \bullet OH and (b) DMPO- \bullet OOH in MOF 3 + [BMIM]N(CN)_2 + H_2O_2 system

Reaction Process

Fig. S15 DFT calculations of $\mathrm{H_2O_2}$ catalysed by MOF 1

