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Fig. S1. EPR results of STO, La-STO and Pt1/PtNP/La-STO. A large number of Ti3+ defect 

existed in the pure STO. After La doped, the La3+ ions were conducive to decrease the Ti3+ 

defect content, which was beneficial for improving the quality of STO crystal.

Fig. S2. X-ray diffraction patterns of STO, La-STO, Pt1/La-STO, PtNP/La-STO and 

Pt1/PtNP/La-STO. 
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Fig. S3. Fourier transforms infrared spectroscopy (FT-IR) spectra in the zone of 4000-

1000 cm-1.

Fig. S4. Transmission electron microscopy (TEM) images of Pt1/PtNP/La-STO.



4

Fig. S5. The size distribution histograms of PtNP (scale bar: 50 nm).

Fig. S6. TEM images of STO.

Fig. S7. TEM images of La-STO.
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Fig. S8. TEM images of Pt1/La-STO.

Fig. S9. HAADF-STEM image of Pt1/La-STO.

Fig. S10. TEM images of PtNP/La-STO.
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Fig. S11. EXAFS (a) R space and (b) k-space fitting curves of Pt1/PtNP/La-STO. FT-

EXAFS spectra at (c) k-space of Pt1/PtNP/La-STO, Pt foil and PtO2.

Fig. S12. The upper and lower panels show the three different initial configurations of Pt 

single atom on La-STO and their corresponding optimized structures, respectively. As 

shown in the lower panels, all the three configurations become the O-top structure, which 

confirms the most stable position for single atom Pt. The green, blue, red and brown balls 

are represented as Sr, Ti, O and Pt atoms, respectively. 
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Fig. S13. (a) Pt L3-edge XANES spectra of Pt1/La-STO, Pt foil and PtO2. (b) FT-EXAFS 

spectra at R space of Pt1/La-STO. (c) R-space fitting results of Pt1/La-STO. (d) k-space 

fitting results of Pt1/La-STO.

Fig. S14. HRTEM image of Pt1/PtNP/TiO2 (red box is PtNP).
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Fig. S15. EDS mapping images of Pt1/PtNP/TiO2.

Fig. S16. HRTEM image of Pt1/PtNP/g-C3N4 (red box is PtNP).
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Fig. S17. EDS mapping images of Pt1/PtNP/g-C3N4.

Fig. S18. HRTEM image of Pt1/PtNP/MIL-125 (red box is PtNP).
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Fig. S19. EDS mapping images of Pt1/PtNP/MIL-125.

Fig. S20. TEM images of (a) TiO2, (b) PtNP/TiO2, (c) Pt1/TiO2 and (d) Pt1/PtNP/TiO2.
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Fig. S21. TEM image of (a) g-C3N4, (b) PtNP/g-C3N4, (c) Pt1/g-C3N4 and (d) Pt1/PtNP/g-

C3N4.

Fig. S22. TEM image of (a) MIL-125, (b) PtNP/MIL-125, (c) Pt1/MIL-125 and (d) 

Pt1/PtNP/MIL-125.
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Fig. S23. The XPS spectra of Pt species in (a) Pt1/PtNP/TiO2, (b) Pt1/PtNP/MIL-125, (c) 

Pt1/PtNP/g-C3N4.

Fig. S24. (a) Pt L3-edge XANES spectra of Pt1/MIL-125, Pt1/g-C3N4, Pt1/TiO2, Pt foil and 

PtO2. (b) FT-EXAFS spectra at R space of Pt1/MIL-125, Pt1/g-C3N4, Pt1/TiO2, Pt foil and 

PtO2. The above results imply the single atom of Pt anchored on these supports.
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Fig. S25. Mott-Schottky (M-S) plots of the (a) STO, (b) La-STO, (c) Pt1/La-STO. The flat 

band potentials have been transferred to the values under pH=0 by using the equations of 

EAg/AgCl=ERHE-0.059pH-0.197 and ENHE=ERHE-0.059pH. The flat band potential obtained 

by the M-S plots is approximately 0.1 V below their conductor band positions for n-type 

semiconductor. The ECBM are about -0.82, -0.85, -0.83 V vs NHE (pH=0) for STO, La-

STO and Pt1/La-STO respectively.

Fig. S26. The crystal structure and morphology of the used Pt1/PtNP/La-STO. (a) XRD 

pattern. (b) TEM image.
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Fig. S27. The element chemical states of the used Pt1/PtNP/La-STO.

Fig. S28. Elemental mapping images of Pt1/PtNP/La-STO after stability test photocatalytic 

overall water splitting under light irradiation.
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Fig. S29. (a) Pt L3-edge XANES spectra of the used Pt1/PtNP/La-STO, Pt foil and PtO2. (b) 

FT-EXAFS spectra at R space of the used Pt1/PtNP/La-STO, Pt foil and PtO2.

Fig. S30. The control experiments of photocatalytic OWS upon Pt1/PtNP/La-STO at 

different condition after 10 hours light irradiation.

Fig. S31. The photocatalytic OWS activities upon Pt1/PtNP/TiO2, Pt1/PtNP/g-C3N4 and 

Pt1/PtNP/MIL-125 their corresponding control samples. Reaction condition: 1.0 mg 

photocalysts, 0.2 mL H2O and 10 hours light irradiation.
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Fig. S32. Electrochemical impedance spectroscopy of samples.

Fig. S33. Photoluminescence (PL) emission spectra of different samples.

Fig. S34. The lifetime of charge carriers over Pt1/PtNP/TiO2, Pt1/PtNP/g-C3N4, 

Pt1/PtNP/MIL-125 and the corresponding samples.
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Fig. S35. The photo-deposition of PbO2 method was used as probe experiment to 

demonstrate the location of photo-generated holes during light irradiation. The mapping 

images of (a) Pb and (b) Pt on Pt1/PtNP/La-STO.

Fig. S36. The photo-deposition of Cr2O3 method was used as probe experiment to 

demonstrate the location of photo-generated electrons during light irradiation. The 

mapping images of (a) Cr and (b) Pt on Pt1/PtNP/La-STO.
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Fig. S37. The XPS results of (a) Pb 4f and (b) Cr 2p on the surface of Pt1/PtNP/La-STO 

after photo-deposition of PbO2 and Cr2O3. As for the Pb 4f, the binding energies of 138.3 

and 143.2 eV can be assigned to Pb 4f7/2 and Pb 4f5/2 of PbO2, respectively. The Pb2+ 

species can be oxidized to Pb4+ (PbO2) by the photo-generated holes. The peaks of 137.5 

and 142.1 eV are the Pb 4f7/2 and Pb 4f5/2 typical binding energies of Pb2+, which represent 

the possible adsorptive Pb2+ on the surface of Pt1/PtNP/La-STO. As for the Cr 2p, the peaks 

located at about 576.6 and 586.4 eV are the typical binding energies of Cr3+ in Cr2O3. The 

binding energies of 579.0 and 589.0 eV can be assigned to the typical peaks of Cr6+ in 

K2CrO4, which due to the possible adsorptive CrO4
2- on Pt1/PtNP/La-STO surface after the 

photo-deposition reaction.

Fig. S38. The quasi-in-situ XPS measurements of (a) Pt1/PtNP/TiO2, (b) Pt1/PtNP/MIL-125, 

(c) Pt1/PtNP/g-C3N4 after light irradiation.
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Fig. S39. Calculated TDOS and PDOS upon STO and La-STO.

Fig. S40. The optimized structural models of Pt1/La-STO (a): top view, (b): side view; 

PtNP/La-STO (c): top view, (d): side view; Pt1/PtNP/La-STO (e): top view, (f): side view. 

The green, blue, red and brown balls are represented as Sr, Ti, O and Pt atoms, 

respectively. 
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Table S1. Structural parameters extracted from the Pt L3-edge EXAFS fitting. (S0
2=0.81).

Sample Scattering 
pair CN R(Å) σ2(10-3Å2) ΔE0(eV) R factor

Pt foil Pt-Pt 12* 2.76 4.4 6.8 0.002

Pt1/La-STO Pt-O 1.66 1.98 2.8 2.3 0.008

Pt-O 1.37 2.02 2.4 10.4
Pt1/PtNP/La-

STO
Pt-Pt 5.80 2.75 3.9 4.5

0.010

S0
2 is the amplitude reduction factor; CN is the coordination number; R is interatomic 

distance (the bond length between central atoms and surrounding coordination atoms); σ2 

is Debye-Waller factor (a measure of thermal and static disorder in absorber-scatterer 

distances); ΔE0 is edge-energy shift (the difference between the zero kinetic energy value 

of the sample and that of the theoretical model). R factor is used to value the goodness of 

the fitting. 

* This value was fixed during EXAFS fitting, based on the known structure.

Error bounds that characterize the structural parameters obtained by EXAFS spectroscopy 

were estimated as N ± 20%; R ± 1%; σ2 ± 25%; ΔE0 ± 10%.

Pt1/PtNP/La-STO (FT range: 2.0-12.0 Å-1; fitting range: 1.3-3.3 Å).
Pt1/La-STO (FT range: 2.0-8.0 Å-1; fitting range: 1.0-3.0 Å).
Pt foil (FT range: 3.0-12.0 Å-1; fitting range: 1-3 Å).
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Table S2. Comparison the catalytic activity of Pt1/PtNP/La-STO to recent reported 

photocatalysts for OWS without sacrificial agents or photosensitizer. Reaction substrate: 

H2O. The unit of OWS performance has been unified into μmol g-1 h-1.


