Supporting Information

Accurate Fabrication and Orientation of Electron Acceptor and Donor Active Sites for Enhancing Photocatalytic Overall Water Splitting

Yan Wu,^{a†} Qingqing Chen,^{a†} Jiaping Liu,^a Kai Fang,^a Man Zhang,^b Tao Jing^c,^{*} Zhujie Li,^{b*} and Gang Wang^{a*}

^aKey Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China. E-mail: GangWang@ahnu.edu.cn

^bAdvanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, P. R. China. E-mail: zhujieli89@163.com

^cCollege of Science, Kaili University, Kaili, 556011, P. R. China.

[†]The authors contributed equally to this work.

Fig. S1. EPR results of STO, La-STO and $Pt_1/Pt_{NP}/La$ -STO. A large number of Ti³⁺ defect existed in the pure STO. After La doped, the La³⁺ ions were conducive to decrease the Ti³⁺ defect content, which was beneficial for improving the quality of STO crystal.

Fig. S2. X-ray diffraction patterns of STO, La-STO, Pt_1/La -STO, Pt_{NP}/La -STO and $Pt_1/Pt_{NP}/La$ -STO.

Fig. S3. Fourier transforms infrared spectroscopy (FT-IR) spectra in the zone of 4000-1000 cm⁻¹.

Fig. S4. Transmission electron microscopy (TEM) images of $Pt_1/Pt_{NP}/La$ -STO.

Fig. S5. The size distribution histograms of Pt_{NP} (scale bar: 50 nm).

Fig. S6. TEM images of STO.

Fig. S7. TEM images of La-STO.

Fig. S8. TEM images of Pt₁/La-STO.

Fig. S9. HAADF-STEM image of Pt₁/La-STO.

Fig. S10. TEM images of Pt_{NP} /La-STO.

Fig. S11. EXAFS (a) R space and (b) k-space fitting curves of $Pt_1/Pt_{NP}/La$ -STO. FT-EXAFS spectra at (c) k-space of $Pt_1/Pt_{NP}/La$ -STO, Pt foil and PtO_2 .

Fig. S12. The upper and lower panels show the three different initial configurations of Pt single atom on La-STO and their corresponding optimized structures, respectively. As shown in the lower panels, all the three configurations become the O-top structure, which confirms the most stable position for single atom Pt. The green, blue, red and brown balls are represented as Sr, Ti, O and Pt atoms, respectively.

Fig. S13. (a) Pt L₃-edge XANES spectra of Pt_1/La -STO, Pt foil and PtO_2 . (b) FT-EXAFS spectra at R space of Pt_1/La -STO. (c) R-space fitting results of Pt_1/La -STO. (d) k-space fitting results of Pt_1/La -STO.

Fig. S14. HRTEM image of Pt₁/Pt_{NP}/TiO₂ (red box is Pt_{NP}).

Fig. S15. EDS mapping images of $Pt_1/Pt_{NP}/TiO_2$.

Fig. S16. HRTEM image of $Pt_1/Pt_{NP}/g-C_3N_4$ (red box is Pt_{NP}).

Fig. S17. EDS mapping images of $Pt_1/Pt_{NP}/g$ - C_3N_4 .

Fig. S18. HRTEM image of $Pt_1/Pt_{NP}/MIL-125$ (red box is Pt_{NP}).

Fig. S19. EDS mapping images of $Pt_1/Pt_{NP}/MIL-125$.

Fig. S20. TEM images of (a) TiO_2 , (b) Pt_{NP}/TiO_2 , (c) Pt_1/TiO_2 and (d) $Pt_1/Pt_{NP}/TiO_2$.

Fig. S21. TEM image of (a) $g-C_3N_4$, (b) $Pt_{NP}/g-C_3N_4$, (c) $Pt_1/g-C_3N_4$ and (d) $Pt_1/Pt_{NP}/g-C_3N_4$.

Fig. S22. TEM image of (a) MIL-125, (b) $Pt_{NP}/MIL-125$, (c) $Pt_1/MIL-125$ and (d) $Pt_1/Pt_{NP}/MIL-125$.

Fig. S23. The XPS spectra of Pt species in (a) $Pt_1/Pt_{NP}/TiO_2$, (b) $Pt_1/Pt_{NP}/MIL-125$, (c) $Pt_1/Pt_{NP}/g-C_3N_4$.

Fig. S24. (a) Pt L₃-edge XANES spectra of $Pt_1/MIL-125$, $Pt_1/g-C_3N_4$, Pt_1/TiO_2 , Pt foil and PtO₂. (b) FT-EXAFS spectra at R space of $Pt_1/MIL-125$, $Pt_1/g-C_3N_4$, Pt_1/TiO_2 , Pt foil and PtO₂. The above results imply the single atom of Pt anchored on these supports.

Fig. S25. Mott-Schottky (M-S) plots of the (a) STO, (b) La-STO, (c) Pt₁/La-STO. The flat band potentials have been transferred to the values under pH=0 by using the equations of $E_{Ag/AgCl}=E_{RHE}$ -0.059pH-0.197 and $E_{NHE}=E_{RHE}$ -0.059pH. The flat band potential obtained by the M-S plots is approximately 0.1 V below their conductor band positions for n-type semiconductor. The E_{CBM} are about -0.82, -0.85, -0.83 V vs NHE (pH=0) for STO, La-STO and Pt₁/La-STO respectively.

Fig. S26. The crystal structure and morphology of the used $Pt_1/Pt_{NP}/La$ -STO. (a) XRD pattern. (b) TEM image.

Fig. S27. The element chemical states of the used $Pt_1/Pt_{NP}/La$ -STO.

Fig. S28. Elemental mapping images of $Pt_1/Pt_{NP}/La$ -STO after stability test photocatalytic overall water splitting under light irradiation.

Fig. S29. (a) Pt L₃-edge XANES spectra of the used $Pt_1/Pt_{NP}/La$ -STO, Pt foil and PtO₂. (b) FT-EXAFS spectra at R space of the used $Pt_1/Pt_{NP}/La$ -STO, Pt foil and PtO₂.

Fig. S30. The control experiments of photocatalytic OWS upon $Pt_1/Pt_{NP}/La$ -STO at different condition after 10 hours light irradiation.

Fig. S31. The photocatalytic OWS activities upon $Pt_1/Pt_{NP}/TiO_2$, $Pt_1/Pt_{NP}/g-C_3N_4$ and $Pt_1/Pt_{NP}/MIL-125$ their corresponding control samples. Reaction condition: 1.0 mg photocalysts, 0.2 mL H₂O and 10 hours light irradiation.

Fig. S32. Electrochemical impedance spectroscopy of samples.

Fig. S33. Photoluminescence (PL) emission spectra of different samples.

Fig. S34. The lifetime of charge carriers over $Pt_1/Pt_{NP}/TiO_2$, $Pt_1/Pt_{NP}/g-C_3N_4$, $Pt_1/Pt_{NP}/MIL-125$ and the corresponding samples.

Fig. S35. The photo-deposition of PbO_2 method was used as probe experiment to demonstrate the location of photo-generated holes during light irradiation. The mapping images of (a) Pb and (b) Pt on $Pt_1/Pt_{NP}/La$ -STO.

Fig. S36. The photo-deposition of Cr_2O_3 method was used as probe experiment to demonstrate the location of photo-generated electrons during light irradiation. The mapping images of (a) Cr and (b) Pt on $Pt_1/Pt_{NP}/La$ -STO.

Fig. S37. The XPS results of (a) Pb 4f and (b) Cr 2p on the surface of $Pt_1/Pt_{NP}/La$ -STO after photo-deposition of PbO₂ and Cr₂O₃. As for the Pb 4f, the binding energies of 138.3 and 143.2 eV can be assigned to Pb 4f_{7/2} and Pb 4f_{5/2} of PbO₂, respectively. The Pb²⁺ species can be oxidized to Pb⁴⁺ (PbO₂) by the photo-generated holes. The peaks of 137.5 and 142.1 eV are the Pb 4f_{7/2} and Pb 4f_{5/2} typical binding energies of Pb²⁺, which represent the possible adsorptive Pb²⁺ on the surface of Pt₁/Pt_{NP}/La-STO. As for the Cr 2p, the peaks located at about 576.6 and 586.4 eV are the typical binding energies of Cr³⁺ in Cr₂O₃. The binding energies of 579.0 and 589.0 eV can be assigned to the typical peaks of Cr⁶⁺ in K₂CrO₄, which due to the possible adsorptive CrO₄²⁻ on Pt₁/Pt_{NP}/La-STO surface after the photo-deposition reaction.

Fig. S38. The *quasi-in-situ* XPS measurements of (a) Pt₁/Pt_{NP}/TiO₂, (b) Pt₁/Pt_{NP}/MIL-125,
(c) Pt₁/Pt_{NP}/g-C₃N₄ after light irradiation.

Fig. S39. Calculated TDOS and PDOS upon STO and La-STO.

Fig. S40. The optimized structural models of Pt_1/La -STO (a): top view, (b): side view; Pt_{NP}/La -STO (c): top view, (d): side view; $Pt_1/Pt_{NP}/La$ -STO (e): top view, (f): side view. The green, blue, red and brown balls are represented as Sr, Ti, O and Pt atoms, respectively.

Sample	Scattering pair	CN	R(Å)	$\sigma^2(10^{-3}\text{\AA}^2)$	ΔE ₀ (eV)	R factor
Pt foil	Pt-Pt	12*	2.76	4.4	6.8	0.002
Pt ₁ /La-STO	Pt-O	1.66	1.98	2.8	2.3	0.008
Pt ₁ /Pt _{NP} /La- STO	Pt-O	1.37	2.02	2.4	10.4	0.010
	Pt-Pt	5.80	2.75	3.9	4.5	0.010

Table S1. Structural parameters extracted from the Pt L₃-edge EXAFS fitting. ($S_0^2=0.81$).

 S_0^2 is the amplitude reduction factor; CN is the coordination number; R is interatomic distance (the bond length between central atoms and surrounding coordination atoms); σ^2 is Debye-Waller factor (a measure of thermal and static disorder in absorber-scatterer distances); ΔE_0 is edge-energy shift (the difference between the zero kinetic energy value of the sample and that of the theoretical model). R factor is used to value the goodness of the fitting.

* This value was fixed during EXAFS fitting, based on the known structure.

Error bounds that characterize the structural parameters obtained by EXAFS spectroscopy were estimated as N ± 20%; R ± 1%; $\sigma^2 \pm 25\%$; $\Delta E_0 \pm 10\%$.

 $Pt_1/Pt_{NP}/La$ -STO (FT range: 2.0-12.0 Å⁻¹; fitting range: 1.3-3.3 Å). Pt_1/La -STO (FT range: 2.0-8.0 Å⁻¹; fitting range: 1.0-3.0 Å). Pt foil (FT range: 3.0-12.0 Å⁻¹; fitting range: 1-3 Å). **Table S2.** Comparison the catalytic activity of $Pt_1/Pt_{NP}/La$ -STO to recent reported photocatalysts for OWS without sacrificial agents or photosensitizer. Reaction substrate: H_2O . The unit of OWS performance has been unified into μ mol g⁻¹ h⁻¹.

	Samples	Cocatalysts	H ₂ (μmol g ⁻¹ h ⁻¹)	Ο ₂ (μmol g ⁻¹ h ⁻¹)	Stability	Reference
	Pt ₁ /Pt _{NP} /La-STO	Pt ₁ , Pt _{NP}	1329.0	652.1	10 cycles, ≥100 h	This work
1	Pt@NH ₂ -UiO- 66@MnO ₄	Pt, MnO _x	19.6	10.1	6 cycles, 18 h	Adv. Mater. 2020, 32, 2004747
2	BiVO4-FTO	Rh, Cr ₂ O ₃ , MnO _x	65.7	32.6	3 cycle, 12 h	Adv. Sci. 2022, 9, 2105299
3	Pt@TpBpy-NS	Pt	132	64	5 cycles, 25 h	Nat. Commun. 2023, 14, 593
4	SrTaO₂N	CrO _y , Ru, IrO _{2(MW)}	60.67	20	6 cycles, 18 h	J. Am. Chem. Soc. 2023, 145, 3839–3843
5	PCN/LaOCI-2	Pt, CoO _x	446	214	5 cycles, 25 h	Angew. Chem. Int. Ed. 2020, 59, 20919–20923
6	Zr-TaON/Ta₃N₅ (3 h)	Ru, Cr ₂ O ₃ , IrO ₂	≈97.2	≈44.4	2 cycles, 24 h	Angew. Chem. Int. Ed. 2022, 61, e202116573
7	TJU-16-Rh _{0.22}	Rh	31	15	5 cycles, 15 h	Nat. Catal. 2020, 3, 1027–1033
8	Pt@ZnTiO _{3-x} N _y @RhO _x	Pt, RhO _x	≈170	≈78	3 cycles, 6 h	Small 2021, 17, 2100084
9	I-TST	Pt, Co(OH) ₂	≈125	≈18	1 cycles, 10 h	J. Am. Chem. Soc. 2020, 142, 4508-4516
10	g-C ₃ N ₄ /rGO/PDIP	Pt, Co(OH) ₂	632	312	21 cycles, 126 h	Adv. Mater. 2021, 33, 2007479
11	CNN/BDCNN	Pt, Co(OH) ₂	626.9	311.2	4 cycles, 24 h	Nat. Energy 2021, 6, 388–397
12	KTaO ₃ /Ta ₃ N ₅	Rh/Cr ₂ O ₃	36.67	18.33	3 cycles, 15 h	Nat. Catal. 2018, 1, 756–763
13	IEF-11	Pt	29.91	13.73	10 cycles, 240 h	Adv. Mater. 2021, 33, 2106627
14	CTF-HUST-A1-'BuOK	NiP _x , Pt	25.4	12.9	5 cycles, 25 h	Angew. Chem. Int. Ed. 2020, 59, 6007–6014
15	r-CTF NSs	Pt	102.6	50.6	5 cycles, 25 h	Angew. Chem. Int. Ed. 2021, 60, 25381–25390
16	PbTiO ₃ /Rh/Cr ₂ O ₃	Rh, Cr ₂ O ₃	32.9	17.4	1 cycles, 5 h	J. Am. Chem. Soc. 2022, 144, 20342-20350
17	Y ₂ Ti ₂ O ₅ S ₂	Rh, Cr ₂ O ₃ , IrO ₂	≈31.25	≈15.0	2 cycles, 20 h	Nat. Mater. 2019 18, 827–832
18	PA-Ni _{1.1} @PCN/Pt _{5hNIR}	Pt	0.058	0.027	5 cycles, 120 h	Angew. Chem. Int. Ed. 2022, 61, e202212234
19	IrO₂/Bi₂CrO₀: Ru/SrTiO₃:Rh	IrO ₂ , Pt	≈5.67	≈4.38	3 cycles, 24 h	Adv. Mater. 2023, 35, 2211182
20	5Al ₂ O ₃ /Rh/GaN–ZnO	Al ₂ O ₃ , Rh	≈906	≈480	6 cycles, 9 h	Nat. Catal. 2023, 6, 80–88