Supporting Information

highly ion conductive ion solvating membranes for durable alkaline

water electrolysis at low temperature and voltage

Bin Hu,^{a,b} Zhongyan Li,^d Lei Liu, *^c Min Liu,^{a,b} Yingda Huang,^a Tiegen Guo,^e Rong Zhang,^{a,b} Kang Geng, *^a and Nanwen Li, *^{a,b,}

Figure S1. Digital photos of (a) three kinds of KOH doped NPBI membranes and (b) Gel-NPBI membrane be applied in twisting and folding.

Figure S2. IR spectra of pristine NPBI membrane, and three NPBI-based ISMs in the region of 600 - 2000 cm⁻¹.

Figure S3. ¹H NMR spectra of pristine and aged PK-NPBI after immersion in 6M KOH at different durations.

Figure S4. Comparison of electrolysis polarization (a) and high-frequency resistance (HFR) (b) in different KOH concentrations with different membranes: Gel-NPBI, PK-NPBI and K-NPBI membranes. Testing conditions:

80 °C, 1.5 mg/cm² IrO₂ anode, and 0.5 mg/cm² Pt/C cathode.

Figure S5. Comparison of electrolysis polarization (a) and high-frequency resistance (HFR) (b) consisting of different KOH concentrations with PK-NPBI membranes. Testing conditions: 80 °C, anode/cathode with Ni/AI foam.

Figure S6. Comparison of electrolysis polarization (a) and high-frequency resistance (HFR) (b) consisting of different KOH concentrations with PK-NPBI membranes. Testing conditions: 80 °C, anode/cathode with Ni foam.

	AEMS	Catalyst	Electrolyte	Temperature	Curre	nt density	Durability
21c	PTFE-	Fe–Ni–Mo/Ni-Mo	1M KOH	80°C	1.57V	1A/cm ²	25h, 0.5A/cm ² , 1MKOH
	Sustainions						
1	PTFE-	Ni–Fe	1 M KOH	60°C	2.0 V	0.62 A/cm ²	240h, 0.5A/cm ² , 60°C,
	Sustainions						1MKOH
21a	PTFE-	RANEY Ni	1 M KOH	60°C	1.8V	0.84 A/cm ²	12000h, 1A/cm², 60°C,
	Sustainion	NiFe ₂ O ₄					1MKOH
21a	FAS-50	NiFeCo/NiFe ₂ O ₄	1 M KOH	60°C	1.8 V	0.24	200h, 1A/cm², 60°C
						A/cm ²	
21b	A201	Ni/CP	1M KOH	50°C	1.9 V	0.35 A/cm ²	
21d	PBI/mTPN	Ni/Fe	1M KOH	50°C	1.98V	0.25 A/cm ²	200h, 0.25A/cm ² , 50°C,
		Мо					1MKOH
1	PFTP-13	Ni/Fe	1M KOH	80°C	2V	1.6 A/cm ²	1000h, 0.5A/cm ² , 60°C,
							1MKOH
21i	Fumatech	NiFe ₂ O ₄ NiFeCo	1M KOH	60°C	1.9V	0.5 A/cm ²	200h, 1A/cm ² , 60°C,
	FAS-50						1MKOH
21i	Sustainion	NiFe ₂ O ₄	1M KOH	60°C	1.9V	1 A/cm ²	2000h,
	37-50	NiFeCo					1A/cm ² ,60°C,1MKOH
This work	Gel-NPBI	Pt/C@IrO ₂	2M KOH	80°C	1.8V	2.5 A/cm ²	
This work	Gel-NPBI	Nickel/Al	6M KOH	80°C	1.9V	2 A/cm ²	1780h, 0.5A/cm ² , 58°C,
This work	Gel-NPBI	Nickel/Al	6M KOH	80°C	2.49V	8 A/cm ²	2MKOH
This work	Gel-NPBI	Ni foam	6MKOH	80°C	2.2V	2 A/cm ²	
	ISMS	Catalyst	Electrolyte	Temperature	Curre	nt density	Durability
10	PTFE	RANEY Ni	24% KOH	80°C	1.83V	1.8 A/cm ²	1000h, 0.5 A/cm ² , 80°C,
	reforced						24% KOH
	Gel-mPBI						
9a	m-PBI	RANEY Ni	24% KOH	80°C	1.8V	1.7 A/cm ²	
9a	m-PBI	Nickel foam	24%KOH	80°C	2.2V	1.2 A/cm ²	48h, 2V, 80°C, 20%KOH
9d	mes-PBI	Nickel foam	25% KOH	80°C	2.5V	1.1 A/cm ²	80h, 0.2A/cm², 80°C,
							25%KOH
21h	Porous-		30% KOH	80°C	2.2V	0.2 A/cm ²	
	PFSA						
9a	Zirfon	Nickel foam	30%KOH	80°C	2.3V	1 A/cm ²	
21g	Zirfon-80	Nickel foam	30%KOH	80°C	2V	1 A/cm ²	
21g	Zirfon-80	Nickel foam LDH-	30%KOH	80°C	2.1V	2 A/cm ²	300h, 1A/cm², 80°C
		NiFe					30%KOH
21e	NPBI-BS-	Nickel foam	6M KOH	80°C	1.8V	1 A/cm ²	100h, 0.8/1.6A/cm ² ,
	47						80°C, 6MKOH
36	PVA-	Nickel foam	15%KOH	70°C	1.9V	0.36 A/cm ²	60min, 0.2A/cm ² , 70°C,
	ABPBI						15%KOH
21f	PF41	Nickel foam	20%KOH	60°C	2.2V	0.4 A/cm ²	100h, 0.2A/cm ² , 60°C, 20%KOH

Table S1. Comparison of the state-of-the-art AEMWEs with PGM-free catalysts in current research.

Figure S7. In-situ durability of A/C Ni–AI AEMWE based on the PK-NPBI

membrane in 2M KOH under 0.5 A/cm² at 80°C

Figure S8. 1H NMR spectra of homogeneous and Gel-NPBI membrane.

Fig.S9 Impedance curves at 250 mA/cm², Operating conditions: 80 °C, 1.5 mg/cm² IrO₂ anode, and 0.5 mg/cm² Pt/C cathode

Fig.S10 Impedance curves at 250 mA/cm², Operating conditions: 80 °C, anode/cathode with Ni foam

Fig.S11 Impedance curves at 250 mA/cm², Operating conditions: 80 °C, anode/cathode with Ni/AI foam

Fig.S12. The H₂ permeability (a) and bubble point pressure (b) of K-NPBI, PK-NPBI, Gel-NPBI, and Zirfon at room temperature

Fig. S13 the relationship between $ln(\sigma)$ and 1000/T for different membrane in 6 M KOH.

Fig.S14 ¹H NMR spectra of origin and aged Gel NPBI after immersion in (a) 2M and (b) 6M KOH at different durations; (c) Weight change of dry membranes in Fenton's reagent at 80 °C for different durations and (e) ¹H NMR spectra of Gel-NPBI membrane in DMSO-d6 before and after oxidation test.

intrinsic viscosity	Test condition	Initial	After In situ
			tests
Gel-NPBI	(2M 80°C 2 V)		0.84
Gel-NPBI	(6M 80°C 1.95 V)		0.65
Gel-NPBI	(2M 30°C 2.75 V)	1.63	0.42
Gel-NPBI	(2M 30°C 2.2 V)		1.09
Gel-NPBI	(2M 58°C 2.15V)		1.2
Gel-NPBI	(6M 58°C 2.1V)		0.97

Table S2 Intrinsic viscosities for Gel-NPBI membranes before and after in si	tu
durability tests at different conditions	

H ₂	Initial	After In situ tests
permeability(barrer)		
Gel-NPBI ^a	3.54	4.7
Gel-NPBI ^b	3.52	6.97

Table S3 gas permeability of GeI-NPBI before and after durability test at 58 $^{\circ}$ C Testing conditions: ^a the cell durability was tested at 500 mA cm⁻² and 58 $^{\circ}$ C using 2 M KOH electrolyte; ^b the cell durability was tested at 500 mA cm⁻² and 58 $^{\circ}$ C using 6 M KOH electrolyte.

Reference

[1] a)N. Chen, S. Y. Paek, J. Y. Lee, J. H. Park, S. Y. Lee, Y. M. Lee, *Energy* & Environmental Science 2021, *14*, 6338-6348. [9] a)M. R. Kraglund, M. Carmo, G. Schiller, S. A. Ansar, D. Aili, E.
Christensen, J. O. Jensen, *Energy & Environmental Science* 2019, *12*, 3313-3318; d)D. Aili, A. G. Wright, M. R. Kraglund, K. Jankova, S.
Holdcroft, J. O. Jensen, *Journal of Materials Chemistry A* 2017, *5*, 5055-5066.

[10] M. L. A. Trisno, A. Dayan, S. J. Lee, F. Egert, M. Gerle, M. R.
Kraglund, J. O. Jensen, D. Aili, A. Roznowska, A. Michalak, H. S. Park, F.
Razmjooei, S.-A. Ansar, D. Henkensmeier, *Energy & Environmental Science* 2022, *15*, 4362-4375.

a)B. Motealleh, Z. Liu, R. I. Masel, J. P. Sculley, Z. R. Ni, L.
Meroueh, *International Journal of Hydrogen Energy* 2021, *46*, 3379-3386; b)L. A. Diaz, R. E. Coppola, G. C. Abuin, R. Escudero-Cid, D.
Herranz, P. Ocon, *Journal of Membrane Science* 2017, *535*, 45-55; c)P.
Chen, X. Hu, *Advanced Energy Materials* 2020, *10*, d)M. Najibah, E. Tsoy,
H. Khalid, Y. Chen, Q. Li, C. Bae, J. Hnat, M. Plevova, K. Bouzek, J. H. Jang,
H. S. Park, D. Henkensmeier, *Journal of Membrane Science* 2021, *640*,
e)X. Hu, M. Liu, Y. Huang, L. Liu, N. Li, *Journal of Membrane Science* 2021, *640*,
e)X. Hu, M. Liu, Y. Huang, L. Liu, N. Li, *Journal of Membrane Science* 2022, *663*; f)A. Konovalova, H. Kim, S. Kim, A. Lim, H. S. Park, M. R.
Kraglund, D. Aili, J. H. Jang, H.-J. Kim, D. Henkensmeier, *Journal of Membrane Science* 2018, *564*, 653-662; g)H. I. Lee, M. Mehdi, S. K. Kim,
H. S. Cho, M. J. Kim, W. C. Cho, Y. W. Rhee, C. H. Kim, *Journal of Membrane Science* 2020, *616*; h)D. Aili, M. K. Hansen, J. W. Andreasen, J.

Zhang, J. O. Jensen, N. J. Bjerrum, Q. Li, *Journal of Membrane Science* 2015, *493*, 589-598; i)Z. Liu, S. D. Sajjad, Y. Gao, H. Yang, J. J. Kaczur, R. I. Masel, *International Journal of Hydrogen Energy* 2017, *42*, 29661-29665.