Electronic supplementary information

Sandwiching high energy frameworks by taking advantage of π -philic molecular recognition

Jatinder Singh^a, Richard J. Staples^b, Magdalena Fabin^{a,c}, Jean'ne M. Shreeve^{a,*}

^a Department of Chemistry, University of Idaho, Moscow, Idaho, 83844-2343, United States.

- ^b Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.
- ^c Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland.

Corresponding Author

Jean'ne M. Shreeve - Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United

States.

Email: jshreeve@uidaho.edu; Fax: (+1) 208-885-5173.

Table of contents

Experimental section	Section S1
X-ray crystallography details and crystallographic data	Section S2
Enthalpy of formation	Section S3
	G 4° G4
References	Section 84
Spectra Analysis	Section S4

Section 1. Experimental section

Section S1.1. Caution!

All compounds should be synthesized in milligram amounts. The new compounds are energetic materials which show increased sensitivities toward various stimuli (e.g., higher temperatures, impact, and friction). Proper safety precautions such as leather gloves, face shield, and eye protection must be taken at all times while synthesizing and handling these materials.

Section S1.2. General methods

All reagents (analytical grade) were purchased from AK Scientific or VWR and were used as supplied. ¹H, ¹³C NMR, ¹⁴N NMR and ¹⁵N NMR spectra were recorded using a 500 MHz (Bruker AVANCE 500) NMR spectrometer operating at 500.19, 125.78, 36.14, and 50.69 MHz, respectively. Chemical shifts in the ¹H and ¹³C NMR spectra are reported relative to Me₄Si and ¹⁵N NMR spectra to MeNO₂ as an external standard. Abbreviations for multiplicities and descriptors are: s = singlet, br = broad signal, m = multiplet (denotes complex pattern), and q = quartet. The decomposition points (onset temperature) were obtained on a differential scanning calorimeter (TA Instruments Company, Model: Q2000) at a scan rate of 5 °C min⁻¹. Infrared spectra were recorded on a FT-IR spectrometer (Thermo Nicolet AVATAR 370) as thin films using KBr plates. The room temperature densities were measured at 25 °C by employing a gas pycnometer (Micromeritics AccuPyc II 1340). The impact and friction sensitivities were determined by using a standard BAM drop hammer and BAM friction tester. Elemental analyses were carried out on a Vario Micro cube Elementar Analyser.

General procedure for the synthesis of TATOT salts

Compounds 2-9 and their corresponding silver or ammonium salts were prepared following literature procedures.¹⁻⁸ Ag⁺ or NH₄⁺ salts of compounds 2, 3, 4, 5, 6, 7, 8 and 9 (1 eq.) were added to a suspension of **TATOT.HCl** (2 eq.) in H₂O (30 mL). The reaction mixture was heated to 50 °C on a magnetic stirrer with oil bath for 30 min. The precipitate was collected by filtration to give the product, which was purified further by washing with H₂O (3 x 10 mL).

ISEM-2: Physical description: Yellow solid. Isolated yield: (0.55 g, 92%); $T_{dec.}$ (onset) = 189 °C; ¹H NMR (500 MHz, d₆-DMSO): 13.37 (br, 2H), 8.11 (s, 4H), 7.20 (s, 4H), 5.76 (s, 4H); ¹³C NMR (125 MHz, d₆-DMSO): 160.1, 152.0, 147.4, 141.2, 132.7; IR (\tilde{v} , cm⁻¹): 3412, 3253, 1702, 1654, 1618, 1561, 1518, 1409, 1284, 1212, 1075; Elemental analysis: Calcd (%) for C₁₀H₁₄N₂₄O₈ (598.37): C, 20.07; H, 2.36; N, 56.18; Found: C, 19.94; H, 2.61; N, 55.91.

ISEM-3: Physical description: Red solid. Isolated yield: (0.45 g, 88%); $T_{dec.}$ (onset) = 238 °C; ¹H NMR (500 MHz, d₆-DMSO): 10.42 (br, 2H), 7.74 (s, 4H), 7.08 (s, 4H), 5.75 (s, 4H); ¹³C NMR (125 MHz, d₆-DMSO): 163.9, 160.0, 147.8, 141.6; IR (\tilde{v} , cm⁻¹): 3401, 3255, 1700, 1683, 1650, 1616, 1562, 1519, 1458, 1421, 1384, 1359, 1237, 1072, 1040, 971, 890, 848, 775, 722, 708; Elemental analysis: Calcd (%) for C₈H₁₄N₂₄O₄ (510.36): C, 18.83; H, 2.76; N, 65.87; Found: C, 18.45; H, 3.33; N, 65.52.

ISEM-4: Physical description: Yellow solid. Isolated yield: (0.58 g, 92%); $T_{dec.}$ (onset) = 203 °C; ¹H NMR (500 MHz, d₆-DMSO): 13.71 (br, 2H), 8.09 (s, 4H), 7.17 (s, 4H), 5.74 (s, 4H); ¹³C NMR (125 MHz, d₆-DMSO): 160.2, 147.5, 141.3, 137.3, 128.0, 124.6; IR (\tilde{v} , cm⁻¹): 3411, 3320, 2917, 2851, 1700, 1654, 1562, 1510, 1458, 1430, 1384, 1229, 1192, 1122, 1041, 959, 822, 708; Elemental analysis: Calcd (%) for C₁₁H₁₅N₂₃O₁₀ (629.38): C, 20.99; H, 2.40; N, 51.19; Found: C, 20.85; H, 2.34; N, 51.47.

ISEM-5: Physical description: Light yellow solid. Isolated yield: (0.56 g, 73%); $T_{dec.}$ (onset) = 226 °C; ¹H NMR (500 MHz, d₆-DMSO): 7.75 (s, 4H), 7.08 (s, 4H), 5.73 (s, 4H); ¹³C NMR (125 MHz, d₆-DMSO): 172.0, 159.9, 147.7, 141.5; IR (\tilde{v} , cm⁻¹): 3313, 3109, 2137, 1689, 1656, 1562, 1510, 1450, 1417, 1384, 1119, 1058, 850 ; Elemental analysis: Calcd (%) for C₈H₁₄N₂₆ (474.37): C, 20.26; H, 2.97; N, 76.77; Found: C, 20.34; H, 3.85; N, 75.94.

ISEM-6: Physical description: Light yellow solid. Isolated yield: (0.50 g, 85%); $T_{dec.}$ (onset) = 225 °C; ¹H NMR (500 MHz, d₆-DMSO): 13.31 (br, 2H), 8.17 (s, 4H), 7.21 (s, 4H), 5.76 (s, 4H); ¹³C NMR (125 MHz, d₆-DMSO): 160.3, 159.6, 147.6, 141.3, 121.8; IR (v, cm⁻¹): ; Elemental analysis: Calcd (%) for $C_{10}H_{14}N_{22}O_{9}$ (586.36): C, 20.48; H, 2.41; N, 52.55; Found: C, 20.47; H, 2.60; N, 52.82.

ISEM-7: Physical description: White solid. Isolated yield: (0.49 g, 87%); $T_{dec.}$ (onset) = 268 °C; ¹H NMR (500 MHz, d₆-DMSO): 8.15 (s, 4H), 7.20 (s, 4H), 5.76 (s, 4H); ¹³C NMR (125 MHz, d₆-DMSO): 166.0,

160.1, 148.3, 147.4, 141.2; IR (\tilde{v} , cm⁻¹): 3453, 3207, 1688, 1651, 1558, 1521, 1497, 1428, 1281, 1245, 1160, 1077, 1021, 973, 912, 837, 777, 730; Elemental analysis: Calcd (%) for C₁₀H₁₄N₂₄O₆ (566.38): C, 21.21; H, 2.49; N, 59.35; Found: C, 21.50; H, 2.34; N, 60.15.

ISEM-8: Physical description: White solid. Isolated yield: (0.50 g, 88%); $T_{dec.}$ (onset) = 269 °C; ¹H NMR (500 MHz, d₆-DMSO): 13.30 (br, 2H), 8.17 (s, 4H), 7.21 (s, 4H), 5.77 (s, 4H); ¹³C NMR (125 MHz, d₆-DMSO): 175.4, 160.3, 160.1, 147.4, 141.1; IR (\tilde{v} , cm⁻¹): 3402, 3256, 3117, 1698, 1682, 1650, 1616, 1580, 1519, 1486, 1465, 1449, 1412, 1385, 1315, 1294, 1270, 1256, 1232, 1181, 1063, 1049, 995, 972, 957, 850, 775, 759, 749, 722, 709; Elemental analysis: Calcd (%) for C₁₀H₁₄N₂₄O₆ (566.38): C, 21.21; H, 2.49; N, 59.35; Found: C, 21.42; H, 2.85; N, 59.06.

9-TATOT: Physical description: Yellow solid. Isolated yield: (0.26 g, 78%); T_{dec.} (onset) = 129 °C; ¹H NMR (500 MHz, d₆-DMSO): 13.26 (br, 2H), 8.17 (s, 4H), 7.21 (s, 4H), 5.76 (s, 4H); ¹³C NMR (125 MHz, d₆-DMSO): 160.1, 147.9, 147.4, 141.1, 113.7; Elemental analysis: Calcd (%) for C₆H₇N₁₅O₄ (353.22): C, 20.40; H, 2.00; N, 59.48; Found: C, 20.07; H, 2.48; N, 58.72.

Section S2. X-ray crystallography details and crystallographic data

Section S2.1. Data collection

Crystals with suitable dimensions were mounted on a nylon loop with Paratone oil. Data were collected using a XtaLAB Synergy, Dualflex, HyPix diffractometer equipped with an Oxford Cryosystems lowtemperature device, operating at T = 99.9(4) K. The structures were solved with the ShelXT¹¹ solution program using dual methods and by using Olex2.¹² The model was refined with ShelXL¹³ using full matrix least squares minimization on F^2 . The thermal ellipsoid and packing diagrams of X-ray structures in the main article and supplementary material are plotted using Diamond 3.2 software.

Section S2.2. Crystal structures and crystallographic data.

Figure S1: Thermal ellipsoid plot for ISEM-2•H₂O. Thermal ellipsoids are drawn at 50% probability level. Data collected at 100 K. CCDC # 2345095.

Figure S2: Thermal ellipsoid plot for **ISEM-3**. Thermal ellipsoids are drawn at 50% probability level. Data collected at 100 K. CCDC # 2345096.

Figure S3: Thermal ellipsoid plot for **ISEM-4**. Thermal ellipsoids are drawn at 50% probability level. Data collected at 100 K. CCDC # 2345097.

Figure S4: Thermal ellipsoid plot for **ISEM-5**. Thermal ellipsoids are drawn at 50% probability level. Data collected at 100 K. CCDC # 2345098.

Figure S5: Thermal ellipsoid plot for **ISEM-6**. Thermal ellipsoids are drawn at 50% probability level. Data collected at 100 K. CCDC # 2350606.

Figure S6: Thermal ellipsoid plot for 9-TATOT•H₂O. Thermal ellipsoids are drawn at 50% probability level. Data collected at 100 K. CCDC # 2345099.

Figure S7: Thermal ellipsoid plot for **ISEM-3•H**₂**O**. Thermal ellipsoids are drawn at 50% probability level. Data collected at 100 K. CCDC # 2346398.

Figure S8: Thermal ellipsoid plot for **ISEM-6**• H_2O . Thermal ellipsoids are drawn at 50% probability level. Data collected at 100 K. CCDC # 2350679.

Compound	ISEM-2	ISEM-3	ISEM-4	ISEM-5
CCDC #	2345095	2345096	2345097	2345098
Formula	C ₁₀ H ₁₈ N ₂₄ O ₁₀	C ₈ H ₁₄ N ₂₄ O ₄	C ₁₁ H ₁₅ N ₂₃ O ₁₀	C ₈ H ₁₂ N ₂₆
$D_{calc.}$ / g cm ⁻³	1.758	1.808	1.862	1.674
<i>m</i> /mm ⁻¹	1.352	1.301	1.428	1.115
Formula Weight	634.48	510.43	629.46	472.44
Color	yellow	red	yellow	yellow
Shape	needle-shaped	needle-shaped	needle-shaped	needle-shaped
Size/mm ³	0.25×0.04×0.01	0.19×0.07×0.02	0.37×0.09×0.05	0.14×0.04×0.02
T/K	100.00(10)	99.98(12)	99.97(13)	100.00(14)
Crystal System	monoclinic	monoclinic	monoclinic	triclinic
Flack Parameter	-	-	0.6(8)	-
Hooft Parameter	-	-	-0.30(10)	-
Space Group	$P2_{1}/c$	$P2_1/n$	Pc	<i>P</i> -1
a/Å	19.9556(6)	19.8933(7)	11.8497(4)	6.5508(8)
b/Å	5.43943(16)	4.99426(12)	6.69000(10)	6.7141(8)
c/Å	22.8384(6)	20.8330(7)	15.2054(5)	11.4242(9)
α/°	90	90	90	89.787(8)
$\beta/^{\circ}$	104.712(3)	115.073(4)	111.346(4)	78.702(9)
γ/°	90	90	90	72.292(11)
V/Å ³	2397.77(13)	1874.77(12)	1122.71(6)	468.54(9)
Z	4	4	2	1
Ζ'	1	1	1	0.5
Wavelength/Å	1.54184	1.54184	1.54184	1.54184
Radiation type	Cu K _a	Cu K _a	Cu K _a	Cu K _a
$Q_{min}/^{\circ}$	2.289	2.575	4.005	6.935
$Q_{max}/^{\circ}$	77.699	77.775	80.339	77.534
Measured Refl's.	18325	17543	12928	4728
Indep't Refl's	4958	3816	4293	1900
Refl's I $\geq 2 s(I)$	3887	2958	4252	1518
R _{int}	0.0678	0.0835	0.0350	0.0405
Parameters	469	381	401	167
Restraints	0	0	68	0
Largest Peak	0.474	0.318	0.544	1.160
Deepest Hole	-0.365	-0.274	-0.607	-0.337
GooF	1.012	1.029	1.174	1.075
wR_2 (all data)	0.1348	0.1244	0.2023	0.2246
wR_2	0.1232	0.1138	0.2020	0.2102
R_{I} (all data)	0.0658	0.0640	0.0892	0.0843
R_{I}	0.0496	0.0473	0.0886	0.0730

 Table S1: Crystallographic data for ISEM-2, ISEM-3, ISEM-4, and ISEM-5.

Compound	ISEM-6	9-TATOT	ISEM-3-H ₂ O	ISEM-6-H ₂ O
CCDC #	2350606	2345099	2346398	2350679
Formula	C ₂₀ H ₂₈ N ₄₄ O ₁₈	C ₆ H ₈ N ₁₅ O _{4.5}	C ₈ H ₁₈ N ₂₄ O ₆	C ₁₀ H ₁₆ N ₂₂ O ₁₀
$D_{calc.}$ / g cm ⁻³	1.855	1.771	1.759	1.792
<i>m</i> /mm ⁻¹	1.419	1.327	1.300	1.384
Formula Weight	1172.86	362.27	546.46	604.45
Color	green	yellow	orange	yellow
Shape	needle-shaped	cube-shaped	plate-shaped	plate-shaped
Size/mm ³	0.18×0.03×0.02	0.20×0.15×0.03	0.13×0.07×0.02	0.15×0.09×0.03
T/K	99.99(10)	99.98(10)	100.00(10)	100.01(10)
Crystal System	orthorhombic	orthorhombic	triclinic	orthorhombic
Flack Parameter	0.6(5)	-	-	-0.03(19)
Hooft Parameter	-0.1(3)	-	-	0.06(15)
Space Group	$Pca2_1$	Pbcn	<i>P</i> -1	$Pna2_1$
a/Å	20.2501(8)	21.7598(3)	7.48693(15)	8.30682(19)
b/Å	5.35469(14)	6.30828(8)	11.5802(2)	52.5690(11)
c/Å	38.7326(8)	19.7952(2)	12.4606(2)	5.13161(17)
$\alpha/^{\circ}$	90	90	104.8425(15)	90
$\beta/^{\circ}$	90	90	90.1568(15)	90
γ/°	90	90	98.5391(17)	90
V/Å ³	4199.9(2)	2717.24(6)	1031.77(3)	2240.88(10)
Z	4	8	2	4
Ζ'	1	1	1	1
Wavelength/Å	1.54184	1.54184	1.54184	1.54184
Radiation type	Cu K _a	Cu K _a	Cu K _a	Cu K _a
$Q_{min}/^{\circ}$	4.367	4.063	3.673	3.363
$Q_{max}/^{\circ}$	80.098	77.047	80.325	80.271
Measured Refl's.	25412	10610	14362	40579
Indep't Refl's	6968	2744	4394	4905
Refl's I $\geq 2 s(I)$	5732	2507	3613	4465
$R_{\rm int}$	0.0879	0.0358	0.0346	0.0989
Parameters	744	263	424	443
Restraints	1	0	0	1
Largest Peak	0.483	0.297	0.247	0.328
Deepest Hole	-0.334	-0.330	-0.261	-0.259
GooF	1.033	1.162	1.057	1.077
wR_2 (all data)	0.1310	0.1044	0.1015	0.1115
wR ₂	0.1233	0.0990	0.0960	0.1075
R_{I} (all data)	0.0734	0.0428	0.0461	0.0480
R_{I}	0.0571	0.0394	0.0368	0.0429

Table S2: Crystallographic data for ISEM-6, 9-TATOT, ISEM-3-H₂O and ISEM-6-H₂O.

Section S3 Enthalpy of formation

Section S3.1. Isodesmic reactions

The ΔH_f (Enthalpy of formation) for ISEM-1⁹, and ISEM-5⁶ are obtained from literature.

The ΔH_f (Enthalpy of formation) for the anions corresponding to 2, 3, 4, 6, 7, and 8 were calculated by using isodesmic reactions (Scheme S1).

The single crystal structure was used for the geometric optimization and frequency analyses using the B3LYP functional with the 6-31+G** basis set. The single-point energies were obtained at the MP2/6-

311+++G** level (Table S8).¹⁴ The atomization energies for cations were calculated by using the G²*ab initio* method ¹⁵ All of the optimized structures were characterized to be true local energy minima on the potential energy surface without imaginary frequencies. In case of the energetic salts, the solid-phase heats of formation were obtained based on a Born–Haber energy cycle.¹⁶ All calculated gas-phase enthalpies for covalent materials are converted to solid phase values by subtracting the empirical heat of sublimation obtained based on Trouton's rule.^{17,18,19, 20}

Section S4. References

1. J. Singh, A. K. Chinnam, R. J. Staples and J. M. Shreeve, Inorg. Chem., 2022, 61, 16493–16500.

2. H. Li, T. Zhang, Z. Li, Y. Wang, J. Ren and T. Zhang, J. Energ. Mater., 2022, 40, 15-33.

3. J. Singh, R. J. Staples and J. M. Shreeve, ACS Appl. Mater. Interfaces, 2021, 13, 61357-61364.

4. M. M. Williams, W. S. Mcewan and R. A. Henry, J. Phys. Chem., 1957, 61, 261–267.

5. Q. Yu, P. Yin, J. Zhang, C. He, G. H. Imler, D. A. Parrish and J. M. Shreeve, *J. Am. Chem. Soc.*, 2017, **139**, 8816–8819.

6. T. S. Hermann, K. Karaghiosoff, T. M. Klapötke, J. Stierstorfer, Chem. Eur. J. 2017, 23, 12087.

7. Y. Cao, H. Huang, X. Lin, J. Yang and X. Gong, New J. Chem., 2018, 42, 11390–11395.

8. X. Y. Zhang, X. Y. Lin, B. Y. Guo, C. Tan and Y. Han, J. Mol. Struct., 2022, 1267, 133526.

9. J. Singh, S. Lal, R. J. Staples and J. M. Shreeve, Mater. Chem. Front., 2022, 6, 933-938.

11. G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112-122.

12. G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3-8.

13. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Crystallogr.* 2009, **42**, 339–341.

14. R. G. Parr, Y. Weitao, *Density-Functional Theory of Atoms and Molecules* (Oxford University Press, 1995).

15. O. Suleimenov, T.-K. Ha, Chem. Phys. Lett. 1998, 290, 451-457.

16. H. D. B. Jenkins, D. Tudela, L. Glasser, Inorg. Chem. 2002, 41, 2364-2367.

- 17. M. S. Westwell, M. S. Searle, D. J. Wales, D. H. Williams, J. Am. Chem. Soc. 1995, 117, 5013-5015.
- 18. S. Wahler, P. Chung, T. M. Klapötke, J. Energ. Mater. 2023, doi:10.1080/07370652.2023.2219678.

19. N. V. Muravyev, K. A. Monogarov, I. N. Melnikov, A. N. Pivkina, V. G. Kiselev, *Phys. Chem. Chem. Phys.* 2021, **23**, 15522–15542.

20. A. L. R. Silva, A. R. R. P. Almeida, M. D. M. C. Ribeiro da Silva, J. Reinhardt and T. M. Klapötke, *Propellants, Explos. Pyrotech.*, 2023, **48**, e202200361.

Section S5. Spectra Analysis

Figure S10: ¹³C NMR spectrum of ISEM-2.

Figure S12: DSC plot for ISEM-2 at the heating rate of 5 °C/min.

Figure S14: ¹³C NMR spectrum of ISEM-3.

Figure S16: DSC plot for ISEM-3 at the heating rate of 5 °C/min.

Figure S18: ¹³C NMR spectrum of ISEM-4.

Figure S20: DSC plot for ISEM-4 at the heating rate of 5 °C/min.

Figure S22: ¹³C NMR spectrum of ISEM-5.

Figure S23: DSC plot for ISEM-5 at the heating rate of 5 °C/min.

Figure S24: ¹H NMR spectrum of ISEM-6.

Figure S26: ¹⁴N NMR spectrum of compound ISEM-6.

Figure S27: DSC plot for ISEM-6 at the heating rate of 5 °C/min.

Figure S28: ¹H NMR spectrum of ISEM-7.

Figure S30: ¹⁴N NMR spectrum of compound ISEM-7.

Figure S31: DSC plot for ISEM-7 at the heating rate of 5 $^{\circ}$ C/min.

Figure S32: ¹H NMR spectrum of ISEM-8.

Figure S34: ¹⁴N NMR spectrum of compound ISEM-8.

Figure S35: DSC plot for ISEM-8 at the heating rate of 5 °C/min.

Figure S36: ¹H NMR spectrum of 9-TATOT.

Figure S38: ¹⁴N NMR spectrum of compound 9-TATOT.

Figure S39: DSC plot for 9-TATOT at the heating rate of 5 °C/min.

Figure S40: ¹³C NMR spectra (stacked) for compounds ISEM-3, 1 and TATOT.

Figure S43: ¹⁵N NMR spectrum of compound ISEM-6.

Figure S42: ¹⁵N NMR spectrum of compound ISEM-7.