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Electrochemical calculations

The specific capacitance of CGX electrode materials (C3g, F g−1) for supercapacitor 

energy storage was calculated from GCD and CV curves by equations S1 and S2. 

C3g = I × Δt / (m ×ΔV) (S1)

C3g =  / 2m × v ×ΔV 

𝑉𝑏

∫
𝑉𝑎

𝐼(𝑉)𝑑𝑉 (S2)

Where I, m, Δt, v, and ΔV represent the current (A), active material mass of the single 

electrode (g), time (s), scan rate (V s−1) and voltage window (V), respectively.

The specific capacitance of the symmetrical supercapacitor (C2g, F g−1) was 

obtained from GCD discharge time based on equation S3. The energy density E (Wh 

kg−1) and power density P (W kg−1) of the supercapacitor device were calculated 

through equations S4 and S5, respectively. 

C2g = 4 × I × Δt / (m × ΔV) (S3)

E = C2g ×ΔV2 / (8 × 3.6) (S4)

P = 3600 ×E /Δt (S5)

The capacity (C, mAh g−1) of the zinc ion capacitor is estimated from GCD 

discharge time by equation S6.

C = I × Δ t/ (3.6 × m) (S6)

Where I, m, and Δt represent the current (A), active material mass of the electrode (g), 

and discharge time (s), respectively.

Density functional theory calculation details

The Vienna ab-initio simulation package plane-wave code was utilized the spin-

polarized density DFT calculations within the generalized gradient approximation 

through Perdew-Burke-Ernzerhof process [1-3]. The projected augmented wave 

potential was employed to describe the ionic cores, and the plane wave basis cutoff 

energy of valence electrons was set as 500 eV [4, 5]. The valence electron 
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configurations utilized in this work are 4s23d10 (Zn), 2s22p2(C), 2s22p4 (O), and 2s22p3 

(N), respectively. Partial occupancies of the Kohn-Sham orbitals were utilized through 

the Gaussian smearing method within the width of 0.02 eV. The energy change lower 

than 10−6 eV was the qualification of electronic energy self-consistent. This slab model 

was separated by a 15 Å vacuum layer in the z-direction. A 3×3×1 gamma-point 

centered k-point grid for the Brillouin zone was used as the structural optimization of 

the surface model. In addition, all atomic layers consented to the full relaxation. 

The adsorption energy (Eads) of an adsorbate zinc atom was defined as the 

following:

Eads = Eads/surf – Esurf – Eads (S7)

Where Eads/surf, Esurf, and Eads represent the energy of the adsorbate adsorbed on a 

surface slab, surface slab energy, and adsorbate energy, respectively.
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Fig. S1. XRD patterns at 35~55°.
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Fig. S2. N1s spectra of CG2.
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Fig. 3. SEM images of CGX, (a) CG, (b) CG1, (c) CG2, and (d) CG3.
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Fig. S4. The specific surface area of CGX samples.
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Table S1. The specific surface area and volume parameters of samples.

Sample SBET

(m2g−1)
Smicro

(m2g−1)
Smicro/SBET

(%)
Vtotal

(cm3g−1

)

Vmicro

(cm3g−1

)

Vmeso

(cm3g−1

)

Vmacro

(cm3g−1

)
CG 62.9 36.4 57.9 0.12 0.02 0.07 0.03

CG1 886.2 511.8 57.8 1.08 0.25 0.44 0.39

CG2 2702.3 876.3 32.4 1.81 0.35 0.47 0.99

CG3 2944.7 1021.4 34.69 1.79 0.41 0.31 1.07
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Fig. S5. (a) The GCD curves of CG2 at the current densities of 1 to 50 A g–1, and (b) 
the specific capacitance of CG2 calculated by the CV measurement, CV curves of (c) 

CG, (d) CG1, (e) CG2, and (f) CG3 at the scan rate from 2 to 10 mV s−1, (g) the 
corresponding fixed Cdl results of CGX electrode.
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Table S2. The specific capacitance and rate ability comparison with similar materials 
in the recent two years.  

Materials Electrolyt
e

Capacitance 
(Current density)

Rate 
retention 
(times)

Reference

AC-TBG 1M KOH 212 F g–1 
(1 A g–1)

55%
 (3-fold)

Carbon 199 (2022) 
249-257 [6]

SPC-1 6M KOH 301.4 F g–1 
(1 A g–1)

77.4% 
(20-fold)

J. Energy Storage 53 
(2022) 105190 [7]

MLCM-750 1M 
H2SO4 

 338.2 F g–1

 (0.8 A g–1) 
70.2% 
(12.5-fold)

J. Colloid Interface 
Sci. 614 (2022) 566-
573 [8]

N-MCNs 6M KOH 240 F g–1

 (1 A g–1) 
75.4% 
(20-fold)

Chinese J. Chem. Eng. 
55 (2023) 34–40 [9]

NC-HPCS 6M KOH 305 F g–1 
(0.5 A g–1) 

78%
(32-fold)

Chem. Eng. J. 433 
(2022) 134486 [10]

BTPA-3-
800 6M KOH 310.4 F g–1

 (0.2 A g–1)
72.1%
 (20-fold）

Int. J. Hydrogen 
Energy 48 (2023) 
25635-25644 [11]

fold-carbon-
spheres 6M KOH 405 F g–1 

(1 A g–1)
40.5% 
(50-fold)

J. Colloid Interface 
Sci. 630 (2023) 61-69. 
[12] 

FLSC-4-
1000 6M KOH 267 F g–1

 (0.5 A g–1) 
69% 
(10-fold)

J. Energy Storage 78 
(2024) 110295 [13]

NCDs@HC
S 6M KOH 314 F g–1 

(1 A g–1) 
83%
 (10-fold)

J. Energy Storage 83 
(2024) 110640 [14]

FPC 6M KOH 287 F g–1

 (1 A g–1) 
49%
 (20-fold)

J. Energy Storage 73 
(2023) 109129 [15]

HNSC 6M KOH 330.4 F g–1

 (1 A g–1) 
76.3% 
(20-fold)

Chem. Eng. J. 480 
(2024) 148213 [16]

CG2 6M KOH 369.8 F g–1 
(1 A g–1)

69.0%
 (50-fold) Our work
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Fig. S6. The capacitance of C-G2 symmetrical supercapacitor under various current 
densities.
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Fig. S7. The adsorption energy computational models of (a) C1, (c) C1-O-add, and (e) 
C2. The electron density difference results of (b) C1, (d) C1-O-add, and (f) C2.
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Fig. S8. CV curves of CG2 ZIC at the scan rates from 1 to 10 mV s−1.
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Fig. S9. GCD curves of CG2 ZIC at the current densities from 0.1 to 0.5 A g−1.
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Fig. S10. The Coulombic efficiency of ZHCs at various e current densities ranging 
from 0.1 to 20 A g−1.
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Table S3. Comparison of the CG2 capacity with similar carbon materials in the recent 
two years.

Materials Electrolyte
E (mAh g−1)

(current 
density)

Rate retention
(current 
density)

Energy density 
(Wh kg−1) 

@ power density

Refer
ences

CG2 1M ZnSO4
241.1

 (0.1 A g−1)
43.8% 

(20 A g−1)
191.6 @80 W 

kg−1
This

Work
3D-

Mxene
2M Zn 

(CF3SO4)2

105.6
 (0.2 A g−1)

57.8%
(5A g−1)

104.5 @ 53.6 Wh 
kg−1 [17]

NPFC70
0

1M Zn 
(CF3SO3)2

207.9 
(0.1 A g−1)

62.8% 
(20A g−1) 85.7 @ unknown [18]

LC-750 1M ZnSO4
185.3

 (0.2 A g−1)
51.4%

(10A g−1)
119.5 @ 20.3 kW 

kg−1 [19]

CFe0.2 2M ZnSO4
178.8

 (0.5 A g−1)
46%

(10A g−1)
120.2 @ 336 W 

kg−1 [20]

CNT@P
C 2M ZnSO4

175.3 
 (0.1 A g−1) 

53.1%
 (50A g−1)

150.8 @ 80 W 
kg−1 [21]

SOCN 3M Zn 
(CF3SO3)2

151
 (0.1 A g−1)

50% 
(10 A g−1)

103.1 @ 51.6 W 
kg−1 [22]

C-800 2 M ZnSO4
121.7

(0.05 A g−1) 
66.7%

 (20 A g−1)
109.3 @ 33.5 W 

kg−1 [23]

OLDC 2 M ZnSO4
136 

(0.1 A g−1) 
42.9%

 (20 A g−1)
136.3 @ 100 W 

kg−1 [24]

S, N-
CNC 2 M ZnSO4

165.5 
(1 A g−1) 

40.7%
 (8 A g−1)

148.9 @ 900 W 
kg−1 [25]

N, P-
OLC 2M ZnSO4

184.5
 (0.5A g−1)

62.5% 
(20 A g−1)

149.5 @ 
unknown [26]

AC-PHC 1 M ZnSO4
146.4 

(0.1 A g−1)
58%

(10 A g−1)
 117 @ 160 W 

kg−1 [27]

SN-
PCNTs 2 M ZnSO4

152.6 
 (0.2 A g−1)

44.5%
(40 A g−1)

95.9 @ 125 W 
kg−1 [28]

DCP 2 M ZnSO4
140  

(0.2 A g−1)
61.6%

(6.4 A g−1)
111.1 @ 
unknown [29]

FPC 1 M Zn 
(CF3SO3)2

135.5 
(1 A g−1)

67.5%
(10 A g−1)

121.95 @ 900 W 
kg−1 [15]

OMC30 1M ZnSO4
242.0 

(0.25 A g−1)
25.2%

(2 A g−1)
206.1 @ 212.5 W 

kg−1 [30]

HC-800
0.5 M 

Na2SO4+1 M 
Zn (CF3SO3)2

242.25 
(0.5 A g−1)

44.68%
 (50A g−1)

186.1 @ 
unknown [31]

IMCC 1 M 
Zn(CF3SO3)2

177
(0.5 A g−1)

40.7%
(20 A g−1)

44.2 Wh cm-2 @ 
29.77 mW cm-2 [32]

NPHC 1M 
ZnSO4+DT

123.5 
(0.1 A g−1)

48.6% 
(10A g−1) / [33]
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