Supporting Information

Mitigating Volume Expansion and Enhancing Cycling Stability of Ferrous

Fluosilicate-Modified Silicon-Based Composite Anodes for Lithium-Ion Batteries

Jichang Sun,^{1,3} Xiaoyi Liu,¹ Penglun Zheng,^{3*} Yang Zhao,⁴ Yun Zheng,^{1*} Jingchao Chai,¹ and Zhihong Liu^{2*}

¹ School of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, P. R. China.

² State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, P. R. China.

³ College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan 618307, P.R. China.

⁴ China Institute of Ocean Engineering (Tsing Tao), Qingdao 266555, P. R. China.

*Email: zhengyun@jhun.edu.cn (Y. Zheng); zhengpenglun@cafuc.edu.cn (P. Zheng); liuzh@jhun.edu.cn (Z. Liu)

Fig. S1. Schematic illustration for the preparation of FeSiF₆.

Fig. S2. XRD results of (a) $Fe₄₅Si₅₅$ and (b) as-synthesized $FeSiF₆$ composites.

Fig. S3. (a)-(c) SEM images of pristine FeSiF₆ crystals. (d)-(e) TEM images of pristine FeSiF₆ crystals. (f) Inverse FFT image of which shows (202), (012) and (021) lattice planes of $FeSiF₆.(e)$ HAADF-STEM image of a single $FesiF_6$ wire, (f-h) The corresponding elemental mapping results of F, Fe and Si.

Fig. S4. (a)-(b) SEM images of pristine $Fe₄₅Si₅₅$ crystals.

Fig. S5. Cyclic voltammetry profiles of (a) Fe-Si@C-T, (b) Fe-Si-T@C and (c) Fe-Si@F@C

electrodes at a sweep rate of 0.5 mV s^{-1} .

Fig. S6. Cyclic voltammetry profiles of $FeSiF₆$ composite anode in the initial five cycles at a sweep rate of 0.1 mV/s.

Fig. S7. Galvanostatic charge-discharge curves of (a) Fe-Si@C-T and (b) Fe-Si-T@C.

Fig. S8. GCD curves of (a) graphite (b) Si and (c) $FesiF_6$ in the 1st, 2nd and 3rd cycles measured at

 $0.1A \text{ g}^{-1}$.

Fig. S9. (a) Cycling performance of Fe₂₅Si₇₅, FeSiF₆, Fe₂₅Si₇₅-T, and Fe₂₅Si₇₅@C at a current density of 1 A/g and corresponding fit curves. (b) Rate performance of $Fe_{25}Si_{75}$, $FeSiF_6$, $Fe_{25}Si_{75}$ -T, and $Fe₂₅Si₇₅(ω)C at different current densities.$

Fig. S10. EIS spectra of $Fe_{25}Si_{75}$, $FeSiF_6$, $Fe_{25}Si_{75}$ -T and $Fe_{25}Si_{75}$ @C with a scan rate of 0.1 mV/s. The inset shows the equivalent circuitmodel used for EIS curve fitting.

Fig. S11. The differential capacity curves of (a) Fe-Si@C-T, (b) Fe-Si-T@C, and (c) Fe-

Si@F@C after different cycles at 1A/g.

Fig. S12. Differential capacity curves for cycles of Fe-Si@C-T at (a) 1st cycle and (b) 5th cycle at 0.1A/g. (b) Differential capacity curves of Fe-Si-T@C in (a) 1st cycle and (b) 5th cycle at 0.1A/g.

Fig. S13. Cyclic voltammetry profiles of $FesiF_6$ anode in the initial five cycles at a sweep rate of

 0.5 mV s⁻¹.

Fig. S14. High-resolution XPS spectra of C 1s of (a) $Fe_{25}Si_{75}$, (b) $FeSiF_6$, and (c) $Fe-Si@F@C$ under different cycle times.

Fig. S15. High-resolution XPS spectra of Si 1s of (a) $Fe_{25}Si_{75}$, (b) $FeSiF_6$, and (c) $FeSi@F@C$

under different cycle times.

Fig. S16. High-resolution XPS spectra of Li 1s of (a) $Fe_{25}Si_{75}$, (b) $FeSiF_6$, and (c) $FeSi@F@C$

under different cycle times.

Fig. S17. Comparison of specific capacities of Fe-Si@C-T, Fe-Si-T@C, Fe-Si@F@C (this study),

and other silicon-based composite anodes in literature.

Table S1. Performance comparison of silicon-based composite anodes.

References

- [1] TANG J, DYSART A D, KIM D H, et al. Fabrication of carbon/silicon composite as lithiumion anode with enhanced cycling stability. Electrochimica Acta, 2017, 247: 626-633.
- [2] HUANG S, CHEONG L-Z, WANG D, et al. Nanostructured phosphorus doped silicon/graphite composite as anode for high-performance lithium-ion batteries. ACS Applied Materials & Interfaces, 2017, 9(28): 23672-23678.
- [3] KOBAYASHI N, INDEN Y, ENDO M. Silicon/soft-carbon nanohybrid material with low expansion for high capacity and long cycle life lithium-ion battery. Journal of Power Sources, 2016, 326: 235-241.
- [4] WANG D, GAO M, PAN H, et al. High performance amorphous-Si@ SiO_x/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization. Journal of Power Sources, 2014, 256: 190-199.
- [5] HAN J, ZHAO C, WANG L, et al. Simple ball milling-assisted method enabling N-doped carbon embedded Si for high performance lithium-ion battery anode. Journal of Alloys and Compounds, 2023, 966: 171668.
- [6] LADAM A, BIBENT N, CéNAC-MORTHé C, et al. One-pot ball-milling synthesis of a Ni-Ti-Si based composite as anode material for Li-ion batteries. Electrochimica Acta, 2017, 245: 497-504.
- [7] QIAN L, LAN J-L, XUE M, et al. Two-step ball-milling synthesis of a Si/SiO_x/C composite electrode for lithium ion batteries with excellent long-term cycling stability. RSC Advances, 2017, 7(58): 36697-36704.
- [8] CABELLO M, GUCCIARDI E, HERRáN A, et al. Towards a high-power Si@ graphite anode for lithium ion batteries through a wet ball milling process. Molecules, 2020, 25(11): 2494.