Supporting Information

Mitigating Volume Expansion and Enhancing Cycling Stability of Ferrous

Fluosilicate-Modified Silicon-Based Composite Anodes for Lithium-Ion Batteries

Jichang Sun,^{1,3} Xiaoyi Liu,¹ Penglun Zheng,^{3*} Yang Zhao,⁴ Yun Zheng,^{1*} Jingchao Chai,¹ and Zhihong Liu^{2*}

¹ School of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, P. R. China.

² State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, P.
R. China.

³ College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan 618307, P.R. China.

⁴ China Institute of Ocean Engineering (Tsing Tao), Qingdao 266555, P. R. China.

*Email: zhengyun@jhun.edu.cn (Y. Zheng); zhengpenglun@cafuc.edu.cn (P. Zheng); liuzh@jhun.edu.cn (Z. Liu)

Fig. S1. Schematic illustration for the preparation of FeSiF₆.

Fig. S2. XRD results of (a) $Fe_{45}Si_{55}$ and (b) as-synthesized $FeSiF_6$ composites.

Fig. S3. (a)-(c) SEM images of pristine FeSiF_6 crystals. (d)-(e) TEM images of pristine FeSiF_6 crystals. (f) Inverse FFT image of which shows (202), (012) and (021) lattice planes of FeSiF_6 .(e) HAADF-STEM image of a single FeSiF_6 wire, (f-h) The corresponding elemental mapping results of F, Fe and Si.

Fig. S4. (a)-(b) SEM images of pristine $Fe_{45}Si_{55}$ crystals.

Fig. S5. Cyclic voltammetry profiles of (a) Fe-Si@C-T, (b) Fe-Si-T@C and (c) Fe-Si@F@C

electrodes at a sweep rate of 0.5 mV s⁻¹.

Fig. S6. Cyclic voltammetry profiles of $FeSiF_6$ composite anode in the initial five cycles at a sweep rate of 0.1 mV/s.

Fig. S7. Galvanostatic charge-discharge curves of (a) Fe-Si@C-T and (b) Fe-Si-T@C.

Fig. S8. GCD curves of (a) graphite (b) Si and (c) FeSiF₆ in the 1st, 2nd and 3rd cycles measured at

0.1A g⁻¹.

Fig. S9. (a) Cycling performance of Fe₂₅Si₇₅, FeSiF₆, Fe₂₅Si₇₅-T, and Fe₂₅Si₇₅@C at a current density of 1 A/g and corresponding fit curves. (b) Rate performance of Fe₂₅Si₇₅, FeSiF₆, Fe₂₅Si₇₅-T, and Fe₂₅Si₇₅@C at different current densities.

Fig. S10. EIS spectra of Fe₂₅Si₇₅, FeSiF₆, Fe₂₅Si₇₅-T and Fe₂₅Si₇₅@C with a scan rate of 0.1 mV/s. The inset shows the equivalent circuitmodel used for EIS curve fitting.

Fig. S11. The differential capacity curves of (a) Fe-Si@C-T, (b) Fe-Si-T@C, and (c) Fe-

Si@F@C after different cycles at 1A/g.

Fig. S12. Differential capacity curves for cycles of Fe-Si@C-T at (a) 1st cycle and (b) 5th cycle at 0.1A/g. (b) Differential capacity curves of Fe-Si-T@C in (a) 1st cycle and (b) 5th cycle at 0.1A/g.

Fig. S13. Cyclic voltammetry profiles of FeSiF_6 anode in the initial five cycles at a sweep rate of

0.5 mV s⁻¹.

Fig. S14. High-resolution XPS spectra of C 1s of (a) Fe₂₅Si₇₅, (b) FeSiF₆, and (c) Fe-Si@F@C under different cycle times.

Fig. S15. High-resolution XPS spectra of Si 1s of (a) Fe₂₅Si₇₅, (b) FeSiF₆, and (c) Fe-Si@F@C

under different cycle times.

Fig. S16. High-resolution XPS spectra of Li 1s of (a) Fe₂₅Si₇₅, (b) FeSiF₆, and (c) Fe-Si@F@C

under different cycle times.

Fig. S17. Comparison of specific capacities of Fe-Si@C-T, Fe-Si-T@C, Fe-Si@F@C (this study), and other silicon-based composite anodes in literature.

Materials	Synthetic method	Synthetic method	lnitial CE (%)	Anode performance	Rate	Reference
Si nanoparticles/wh ite wheat flour	Ball milling and annealing	Core shell	71	880 mAh g ⁻¹ 92% retention after 90 cycles	210 mA g ⁻¹	1
Si powder/red phosphorus/grap hite	Ball milling	Core shell	64.7	883.4 mAh g ⁻¹ after 200 cycles	200 mA g ⁻¹	2
Micronized Si/citric acid	Ball milling and carbonization	Core shell	82	850 mAh g ⁻¹ after 100 cycles	210 mA g ⁻¹	3
Amorphous- Si@SiO _x /C	Ball milling and carbonization of the citric acid	Core shell	82	1230 mAh g ⁻¹ after 100 cycles	500 mA g ⁻¹	4
N-doped carbon embedding Si nanoparticles	ball milling and pyrolysis carbonization	Core shell	80.8	794.7 mAh g ⁻¹ after 1000 cycles	1 A g ⁻¹	5
$Ni_{0.12}Ti_{0.12}Si_{0.76}$	One-step ball- milling method	The ternary compound	81.8	500 mAh g ⁻¹ after 50 cycles	840 mA g ⁻¹	6
Si@SiO _x /C	Two-step ball-milling	Core shell	82	726 mAh g ⁻¹ after 500 cycles	100 mA g ⁻¹	7
Silicon@graphit e	a facile and scalableball milling	Core shell	77	646.5 mAh g ⁻¹ after 100 cycles	200 mA g ⁻¹	8

Table S1. Performance comparison of silicon-based composite anodes.

References

- [1] TANG J, DYSART A D, KIM D H, et al. Fabrication of carbon/silicon composite as lithiumion anode with enhanced cycling stability. Electrochimica Acta, 2017, 247: 626-633.
- [2] HUANG S, CHEONG L-Z, WANG D, et al. Nanostructured phosphorus doped silicon/graphite composite as anode for high-performance lithium-ion batteries. ACS Applied Materials & Interfaces, 2017, 9(28): 23672-23678.
- [3] KOBAYASHI N, INDEN Y, ENDO M. Silicon/soft-carbon nanohybrid material with low expansion for high capacity and long cycle life lithium-ion battery. Journal of Power Sources, 2016, 326: 235-241.
- [4] WANG D, GAO M, PAN H, et al. High performance amorphous-Si@ SiO_x/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization. Journal of Power Sources, 2014, 256: 190-199.
- [5] HAN J, ZHAO C, WANG L, et al. Simple ball milling-assisted method enabling N-doped carbon embedded Si for high performance lithium-ion battery anode. Journal of Alloys and Compounds, 2023, 966: 171668.
- [6] LADAM A, BIBENT N, CéNAC-MORTHé C, et al. One-pot ball-milling synthesis of a Ni-Ti-Si based composite as anode material for Li-ion batteries. Electrochimica Acta, 2017, 245: 497-504.
- [7] QIAN L, LAN J-L, XUE M, et al. Two-step ball-milling synthesis of a Si/SiO_x/C composite electrode for lithium ion batteries with excellent long-term cycling stability. RSC Advances, 2017, 7(58): 36697-36704.
- [8] CABELLO M, GUCCIARDI E, HERRáN A, et al. Towards a high-power Si@ graphite anode for lithium ion batteries through a wet ball milling process. Molecules, 2020, 25(11): 2494.