

¹⁷ Keywords: hydrogen adsorption, defects engineering, two-dimensional material, angle-resolved photoemis-¹⁸ sion spectroscopy, DFT.

[∗] jairoban@ucm.es

¹⁹ I. Comparison of the valence band of an undoped and a Nb-doped 20 ${\rm MoS}_2$ sample

FIG. S1. (a-b) ARPES intensity showing the dispersion along the $\overline{\text{TK}}$ direction for the undoped and Nb-doped samples, respectively. The aceptor dopant density is $N_a \sim 2 \cdot 10^{17}$ cm⁻³. (c) Energy dispersion curves (EDCs) at the $\overline{\Gamma}$ point marked in (a-b) showing the VBM determination of the undoped (white continuous line) and Nb-doped (white dashed line) samples. A rigid band shift of 0.63 eV towards the Fermi level is obtained. The EDCs integrate a $\Delta k_{\parallel} = 0.1 \text{ \AA}^{-1}$ region centered at $\overline{\Gamma}$. (d) Detail of the ARPES intensity around the \overline{K} point of the undoped (top) and Nb-doped (bottom) samples highlighting the splitting at this point. The displayed region corresponds to the white dashed boxes in panels (a-b). (e) EDCs at the \overline{K} point marked in (d) showing a spin-orbit splitting of 160 meV in the undoped (red continuous line) and Nb-doped (red dashed line) samples. The EDCs integrate a $\Delta k_{\parallel} = 0.06 \text{ \AA}^{-1}$ region centered at $\overline{\text{K}}$.

21 II. Comparison of the core-levels of an undoped and Nb-doped MoS_2

²² sample

 23 In Fig. S2a-b we depict the X-ray photoemission spectroscopy (XPS) of the Mo 3d and 24 S 2p series of core-levels (CL) for both the undoped and Nb-doped samples. Three peaks ²⁵ are identified after fitting the spectrum of Fig. S2a. In the undoped (Nb-doped) sample, 26 the S 2s peak is observed at 226.41 eV (225.93 eV), the Mo $3d_{5/2}$ peak at 229.21 eV (228.73 ²⁷ eV), corresponding to Mo⁺⁴ oxidation state in MoS₂, and a minor peak, the Mo $3d_{3/5}$ at ²⁸ 232.35 eV (231.83 eV), due to Mo⁺⁶ oxidation state in MoO₃. The presence of MoO₃ can be 29 attributed to the use of $MoO₃$ as a precursor agent during the chemical vapour transport $30\,$ (CVT) growth. Fig. S2b presents the S 2p peak and its corresponding fitting. In the 31 undoped (Nb-doped) sample, the S $2p_{3/2}$ component is at 162.05 eV (161.54 eV).

 α A summary of the peak shifts is presented in Fig. S2c, for the main MoS₂ CL peaks: 33 0.48 eV for Mo $3d_{3/5}$ and 0.51 eV for S 2p. It is important to note that no Nb 3d signal was ³⁴ detected in any of the doped sample batches employed in this work (see Fig. S2d). As said 35 before, the Nb doping concentration is ~ 0.001 at.% (i.e., $\sim 2 \cdot 10^{17}$ cm⁻³), so it is notably ³⁶ lower in comparison to concentrations used in other works^{1,2}. In these studies, for a doping 37 concentration of 0.5 at.% and higher, well-resolved Nb 3d CL is detected.

³⁸ Therefore, we do not observe changes in the VB or the core-levels due to Nb doping. ³⁹ Both undoped and Nb-doped samples exhibit similar characteristics.

FIG. S2. XPS CLs of the undoped and undoped $MoS₂$ samples. (a) Mo 3d & S 2s. Inset: S 2s $(h\nu = 400 \text{ eV})$. (b) S 2p ($h\nu = 200 \text{ eV}$). (c) Summary of the peak shifts of the fitted components in (a-b). (d) Nb 3d ($h\nu = 400 \text{ eV}$).

40 III. DFT band structure of a pristine single-layer of $MoS₂$ and a \sin single-layer with H atoms adsorbed in the V_S

 μ ² In Fig. S3a-b we present the calculated band structure of the pristine MoS₂ structure 43 and the structure with two H atoms adsorbed onto the V_S (4 % of V_S), respectively. The ⁴⁴ calculation of panel b was performed using the unfolding package adapted to Quantum ⁴⁵ Espresso.

FIG. S3. (a) DFT orbital-projected electronic band structure calculated for a pristine single-layer of MoS₂. (b) DFT orbital-projected electronic band structure calculated for a single-layer of MoS₂ with H atoms adsorbed and with 4 $\%$ of V_S . The red dashed rectangles marks the region from which the set of EDCs of Fig. 3d and Fig. 4d are taken.

 $\frac{46}{46}$ To simulate the impact of the exposure to H₂ of a surface with sulfur vacancies, various adsorption configurations were examined. Since the evolution of the band structure after 48 annealing indicates that the created sulfur defect density is not very high, a 4% of V_s was 49 introduced accordingly. First, we observed that in the pristine scenario (no V_s) the H_2 50 molecule prefers to physisorb on top sites of the Mo atoms (T_{MO}) with a vertical orienta- tion. When V_S defects are introduced, the H_2 molecule tends to occupy the V_S position. However, the outcome depends on the molecule orientation. Vertically oriented H_2 favours 53 physisorption, adopting an equilibrium position \sim 1.8 Å above the top S layer. Conversely, when the molecule is forced to lie horizontally close to a V_s , it also dissociates. The resulting H atoms bond to the uncoordinated Mo atoms. The dissociation scenario is 0.17 eV more favourable than physisorption. Additional configurations were tested by placing one and three hydrogen atoms in the V_s (not shown). These configurations are less energetically favourable³.

⁵⁹ IV. Detail of the formation of a Fermi step after hydrogenation

FIG. S4. (a) Enlarged region of Fig. 4a, showing details of the ARPES intensity along the ΓK direction for the annealed sample at 700 °C after exposure to 1000 L of H_2 at a pressure of $1 \cdot 10^{-4}$ mbar ("high pressure"). (b) Set of EDCs taken in the red rectangle region marked in (a). The EDCs show the formation of a Fermi step after hydrogenation through the entire reciprocal space.

⁶⁰ V. Comparison between the hydrogenation at relative high and low

⁶¹ pressures

FIG. S5. Enlarged region of the EDC at $\overline{\Gamma}$ of the sample hydrogenated after annealing at 700 °C. (a) Hydrogenation at $1 \cdot 10^{-4}$ mbar ("high pressure" up to 1000 L and RT. (b) Hydrogenation at 1 · 10−⁶ mbar ("low pressure") up to 1000 L. The pristine and 700 ◦C annealing EDCs are included for comparison.

- 62 ¹ J. Suh, T.-E. Park, D.-Y. Lin, D. Fu, J. Park, H. J. Jung, Y. Chen, C. Ko, C. Jang, Y. Sun,
- R. Sinclair, J. Chang, S. Tongay, and J. Wu, Nano Letters 14, 6976 (2014).
- ² M. R. Laskar, D. N. Nath, L. Ma, E. W. Lee, C. H. Lee, T. Kent, Z. Yang, R. Mishra, M. A.
- Roldan, J.-C. Idrobo, S. T. Pantelides, S. J. Pennycook, R. C. Myers, Y. Wu, and S. Rajan,
- Applied Physics Letters 104, 092104 (2014).
- ³ Y. Irusta, G. Morón-Navarrete, and C. Gonzalez, Nanotechnology (2024).