Electronic Supplementary Information

Theoretical probing monolayer BiI³ as electrolyte separator and 3*d***-TM doped BiI³ as electrocatalysts toward high performance Lithium-Sulfur batteries**

Wentao Wu^a, Kaixin Zou^a, Li Wang^{a,b}, Boyan Li^{*,c},Wen Yang^d, Chunlai Gao^e, Feng Lu^{*,a}, Weichao Wang^a, Wei-Hua Wang^{*,a}

*^a*Department of Electronic Science and Engineering, and Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Nankai University, Tianjin 300350, China *^b*Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China *^c*National Institute of Clean-and-Low-Carbon Energy and Beijing Engineering Research Center of Nano-structured Thin Film Solar Cells, Beijing 102211, China *^d*Shanxi Key Laboratory of Metal Forming Theory and Technology, School of Material Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China *^e*Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian 223001, China

*Email: whwangnk@nankai.edu.cn, [boyan.li.a@chnenergy.com.cn,](mailto:boyan.li.a@chnenergy.com.cn;) lufeng@nankai.edu.cn

Details of formation energy of the substitutional doping configuration (TMsub/BiI3)

The formation energy of substitutional doping for $TM_{sub}/Bil₃$ is expressed as,

$$
E_{form} = E_{TM_{sub}/\text{Bil}_3} + E_{\text{Bi}} - E_{\text{Bil}_3} - E_{\text{TM}}
$$

where E_{TMsub/BiI_3} , E_{BiI_3} , E_{TM} and E_{Bi} are the energies of the substitutional doping systems, the monolayer BiI₃ supercell, one single TM and Bi atom, respectively.

Details of equilibrium potential (θ_{eq}) of Sulfur reduction reaction

The computational details are analogous to the oxygen reduction reaction and oxygen evolution reaction processes. Firstly, the stander free energy of Li₂S formation is defined by the following formula,

$$
\Delta G_f^0 = 8G(Li_2S_{bulk})^0 - G(S_{8 \text{ - bulk}})^0 - 16G(Li_{atom})^0
$$

where $G(Li_2S_{bulk})^0$, $G(S_{8-hulk})^0$, $G(Li_{atom})^0$ represent the total energies of bulk Li₂S, one S₈ cluster, and one Li atom in bulk phase. Here, the Gibbs energy of $Li₂S$, $S₈$ are -32.918 eV, -11.995 eV, respectively. Therefore, the stander free energy of Li₂S formation (ΔG_f^0) and f equilibrium potential are calculated as follows,

$$
\Delta G_f^0 = -32.546 \text{ eV}
$$

$$
U_{eq} = -\frac{\Delta G_f^0}{16e} = \frac{32.546 \text{ eV}}{16e} = 2.034 \text{ V}
$$

Fig. S1 Density of states for monolayer BiI₃ adsorbed with Li_2S_6 in (a) and with Li_2S_8 in (b).

Fig. S2 The three stable adsorption doping configurations of 2D TM/BiI₃ with the *H*_{center} configuration for Ti, V, Cr, Mn/BiI₃ systems in (a), H_{top} configuration for Cu/BiI₃ system in (b), Bi_{top} configuration for Fe, Co, Ni/BiI₃ systems in (c).

Fig. S3 (a) Top view and side view of the substitutional doping TM_{sub}/BiI₃ systems, and formation energies of the most stable adsorption doping TM/BiI₃ systems and the substitutional doping TM_{sub}/BiI₃ systems in (b).

Fig. S4 Density of states for (a) pristine BiI₃ and (b-i) $3d$ -TM/BiI₃ systems. (b) Ti/BiI₃, (c) V/BiI₃, (d) Cr/BiI₃, (e) Mn/BiI_3 , (f) Fe/BiI₃, (g) Co/BiI₃, (h) Ni/BiI₃, (i) Cu/BiI₃.

Fig. S5 (a) Top view and side view of LiPSs adsorption sites on *H* doped site (Ti, V, Cr, Mn, Cu doped BiI3) (b) and Bi_{top} doped site (Fe, Co, Ni doped BiI₃) configurations, respectively. Adsorption energies of Li₂S at different adsorption sites for *H* doped site configuration (Ti, V, Cr, Mn, Cu doped BiI₃) in (c) and on Bitop doped site configuration (Fe, Co, Ni doped BiI_3) in (d).

Fig. S6 Charge density difference in top and side views for (a) Ti/BiI₃, (b) V/BiI₃, (c) Cr/BiI₃, (d) Mn/BiI₃, (e) Fe/BiI₃, (f) Co/BiI₃, (g) Ni/BiI₃, (h) Cu/BiI₃ systems.

Fig. S7 Free energy of SRR for TM/BiI₃ systems at $U = 0$ V and equilibrium potential ($U = 2.03V$).

Fig. S8 Charge density difference in top and side views for Li₂S adsorbed on (a) Ti/BiI₃, (b) Cr/BiI₃, (c) Mn/BiI₃, (d) Co/BiI₃, (e) Ni/BiI₃, (f) Cu/BiI₃ systems.

Fig. S9 The diagrams of rate-determined step on BiI₃ (a) and V/BiI₃ in (b).

Fig. S10 Density of states of Li₂S adsorbed on BiI₃ in (a), Ti/BiI₃ in (b), V/BiI₃ in (c), Cr/BiI₃ in (d), Mn/BiI₃ in (e), Cu/BiI₃ in (f), Fe/BiI₃ in (g), Co/BiI₃ in (h) and Ni/BiI₃ in (i).

Fig. S11 The xy plane-averaged charge density differences along the z axis for (a) Ti/BiI3, (b) Cr/BiI3, (c) Mn/BiI3, (d) Co/BiI3, (e) Ni/BiI3, and (f) Cu/BiI3 systems.

Fig. S12 Li₂S decomposition barrier curves for (a) V/BiI₃, (b) Cr/BiI₃, (c) Mn/BiI₃, (d) Co/BiI₃, (e) Ni/BiI₃, (f) $Cu/BiI₃$ systems.

Fig. S13 The COHP of Li-S bonds in Li₂S adsorbed on $3d$ -TM doped BiI₃ systems. (a) BiI₃, (b) Ti/BiI₃, (c) V/BiI_3 , (d) Cr/BiI₃, (e) Mn/BiI₃, (f) Fe/BiI₃, (g) Co/BiI₃, (h) Ni/BiI₃, (i) Cu/BiI₃.