Supplementary Material for

Upcycling plastic wastes into high-performance nano-MOFs by efficient neutral hydrolysis for water adsorption and photocatalysis

Ling-Xia Yun^{a,b}, Meng Qiao^{a,b}, Bin Zhang^{a,b}, Hang-Tian Zhang^c, Jie-Xin Wang^{a,b*}

^aState Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China;

^bResearch Center of the Ministry of Education for High Gravity Engineering and

Technology, Beijings University of Chemical Technology, Beijing, 100029, PR China

^cQuzhou Innovation Institute for Chemical Engineering and Materials, Quzhou, Zhejiang 324000, PR China

*Corresponding authors. E-mails: wangjx@mail.buct.edu.cn (Jie-Xin Wang)

1. Details of experimental procedure

The pseudo-first-order kinetics are calculated as follows (Equation S4-S6), where C_t and C_0 refer to the solid contents of PET at different times; X refers to PET conversion; k is the apparent rate constant; E_a refers to the apparent activation energy. A, R, and T refer to the pre-exponential factor, gas constant (8.314 J·k⁻¹·mol⁻¹), and reaction temperature in Kelvin, respectively.

$$\ln(C_t / C_0) = \ln(1 - X)$$
(S2)

$$\ln(1-X) = -kt \tag{S3}$$

$$\ln k = -\frac{E_a}{RT} + \ln A \tag{S4}$$

1.2. Raw materials and MOF synthesis

All the reagents and solvents were commercially available and directly used without additional purification. Chromium(III) nitrate nonahydrate $(Cr(NO_3)_3 \cdot 9H_2O, >99\%)$, zirconium chloride (ZrCl₄, >99%), cerium (IV) ammonium nitrate $(NH_4)_2Ce(NO_3)_6, 99\%)$, and iron(III) chloride hexahydrate (FeCl₃ · 6H₂O, >99%) were purchased from Aladdin (Shanghai, China). Aluminum nitrate nonahydrate (Al(NO₃)₃ · 9H₂O, >99%) was purchased from Macklin (Shanghai, China).

1.2.1. One-Pot synthesis

One-pot synthesis of MOFs was directly performed after PET wastes were completely hydrolyzed to terephthalic acid as follows (Scheme 1).

Synthesis of OP-MIL-101 (Cr): 0.453 g PET was catalytically hydrolyzed by 0.0045 g ZnO nanoparticles in 5 mL water. Then 1.060 g Cr(NO₃)₃·9H₂O dispersed in

75 mL water was introduced in the hydrolysate slurry, followed by 6 h of heating at 180 °C in a Teflon liner placed in an oven.

Synthesis of OP-MIL-53(Al): 0.599 g PET was catalytically hydrolyzed by 0.0060 g ZnO nanoparticles in 8 mL water. Then $1.310 \text{ g Al}(\text{NO}_3)_3 \cdot 9\text{H}_2\text{O}$ dispersed in 32 mL DMF was added to the hydrolysate slurry, followed by 12 h of heating at 150 °C in a Teflon liner placed in an oven.

Synthesis of OP-MIL-53(Al, Fe): 0.599 g PET was catalytically hydrolyzed by 0.0060 g ZnO nanoparticles in 8 mL water. Then 0.788 g Al(NO₃)₃·9H₂O and 0.379 g FeCl₃·6H₂O dispersed in 32 mL DMF was added to the hydrolysate slurry, followed by 12 h of heating at 150 °C in a Teflon liner placed in an oven.

Synthesis of OP-UiO-66(Zr): 0.663 g PET was catalytically hydrolyzed by 0.0066 g ZnO nanoparticles in 10 mL water. Then 0.480 g ZrCl₄ dispersed in 40 mL DMF was added to the hydrolysate slurry. The system was heated to 120 °C at a rate of 1 °C/min and held at 120 °C for 24 h in a Teflon liner placed in an oven.

Synthesis of OP-UiO-66(Ce): 0.855 g PET was catalytically hydrolyzed by 0.0086 g ZnO nanoparticles in 10 mL water. Then 2.741 g $(NH_4)_2Ce(NO_3)_6$ dispersed in 40 mL DMF was added to the hydrolysate slurry, followed by 0.5 h of heating at 110 °C in a Teflon liner placed in an oven.

The OP-MOF products were collected by centrifugation, washed with MeOH and DMF, and finally dried under vacuum. Except ZnO loaded on OP-MOFs, other ZnO nanoparticles highly dispersed in water are recycled by the centrifugation after MOF synthesis.

1.2.2. Two-Pot synthesis

Two-pot synthesis of MOFs was performed after PET wastes were completely hydrolyzed, and then TPA powders were obtained by the process of alkalization (3.5 g KOH, after hydrolysis of 6 g PET), then acidification (6.34 g chlorhydric acid, 36 wt%), and subsequent centrifugation and drying. The terephthalic acid powders stepwisely prepared by the hydrolysis were used instead of TPA slurry in one-pot synthesis. The

amount of terephthalic acid powders used to prepare **TP-MIL-101 (Cr)**, **TP-MIL-53(Al)**, **TP-MIL-53(Al, Fe)**, **TP-UiO-66(Zr)**, and **TP-UiO-66(Ce)** were 0.440 g, 0.582 g, 0.582 g, 0.644 g, and 0.830 g, respectively. The ratios of metal to the ligand and solvothermal procedures of the above MOFs were determined according to some references¹⁻⁵.

1.3. Structural characterizations

The thermal stability of the material was characterized using a thermogravimetric Mettler TGA2 analyzer (under a nitrogen atmosphere, the heating rate is 10 °C/min, and a test range from 30 to 800 °C). The morphology and particle sizes of the sample were characterized by a Hitachi 7700 scanning electron microscope. The ¹H NMR spectra were analyzed by BRUKER AVANCE 400. Fourier-transformed infrared spectroscopy (FTIR) was conducted on a Nicolet iS5 spectrometer. X-ray photoelectron spectroscopy (XPS) was examined with a Thermo Scientific K-Alpha. Inductively coupled plasma (ICP) examinations were carried out by Shimadzu ICPE-9000 (OES).

Figure S1. (a, b) XPS spectra of the ZnO nanoparticles.

Figure S2. TG curves of PET samples.

Figure S3. (a) XRD patterns and (b) ¹³C NMR spectra of the PET powders-derived TPA and standard TPA. (c) HPLC chromatograms of the PET-derived TPA. (d) The corresponding

calibration curve of standard TPA used to quantify the purities of the produced TPA.

To compares the performances of the synthesized NPs with some reported catalysts, the related weight hourly space velocity (WHSV) for the hydrolysis reaction are calculated using the following equation:

WHSV =
$$\frac{m_{product}}{m_{catalyst} \times t}$$
 (S5)

where $m_{product}$ and $m_{catalyst}$ represent the weight of the product and the catalyst respectively, and t is the reaction time. The reaction temperature was included in the diagram as an important factor.

Reaction	Catalyst	Mass ratio of cat./PET	Mass ratio of solvent/	Temperature (°C)	Time (h)	Product yield	Ref.	WHSV (g _{TPA} · g _{cat} ⁻¹ ·h ⁻
		(%)	РЕТ			(%)		¹)
Neutral hydrolysis	ZnO aqueous nanodispersion	1	10	200	1	95	this work	82.1
	ZSM-5 acidic catalyst	50	119	200 (microwave assisted)	0.5	90	6	3.1
	TPA	80	8	220	3	95.5	7	0.3
	Ni/γ-Al ₂ O ₃	12.9	10	267	0.8	97.1	8	8.1
	[HSO ₃₋ pmim][HSO ₄]	1.3	220	170	4.5	88	9	13.0
Uncatalyzed	-	0	10	200	2	<4	10	-
	-	0	2.85	200	24	97.7	11	-
acid hydrolysis	p- toluenesulfonic acid	16	20	150	1.5	96.2	12	3.5
	Poly (4- styrenesulfonic acid)	0.1	50	150	14	~55	13	34.0

Figure S4. Comparison of reported catalysts for neutral hydrolysis (spheres) and acid hydrolysis (diamonds).

Figure S5. PXRD patterns of the TP-MOFs derived from PET powders.

Figure S6. Pore size distributions and mean pore diameters of all MOFs formed.

BET surface area (m ² /g)					Zn content	H ₂ O uptake	
MOFs	PET powders- derived MOFs	PET bottles- derived MOFs	PET textiles- derived MOFs	conventionally synthesized MOFs	of PET powders- derived MOFs (ppm)	of PET powders- derived MOFs (mg/g)	
OP-MIL-101(Cr)	1028.9	990.9	1809.5	2744 ¹	488.7	887.2	
OP-UiO-66(Zr)	921.6	791.3	647.1	1010 ²	965.1	322.0	
OP-UiO-66(Ce)	320.0	361.4	100.5	391 ³	1105.8	227.7	
OP-MIL-53(Al)	947.5	789.0	963.3	917 ⁴	2108.9	706.0	
OP-MIL-53(Al, Fe)	894.9	794.5	1413.0	13975	494.9	607.7	
TP-MIL-101(Cr)	2591.9			27441		1327.3	
TP-UiO-66(Zr)	811.9			1010 ²		215.0	
TP-UiO-66(Ce)	504.7		-	391 ³	<235	394.0	
TP-MIL-53(Al)	1094.1			9174		172.5	
TP-MIL-53(Al, Fe)	1093.0			1397 ⁵		149.0	

 Table S2. The BET specific surface areas, Zn residues, water adsorptions of the PET-derived MOFs.

3. Experimental data for TC photocatalytic removal

The photocatalytic reduction efficiency of the photocatalysts was calculated according to the equation:

Removal efficiency (%) =
$$\frac{(C_0 - C_t)}{C_0} \times 100\%$$
 (S6)

where C_0 and C_t refer to the initial concentration of TC and concentration of TC at time t.

The observed reaction rate constants were calculated respectively according to the pseudo-first-order kinetic model (k1, k_{obs}) and pseudo-second-order kinetic model (k₂), as shown in Equations S8-S9.

$$-k_1 t = \ln(\frac{C_t}{C_0}) \tag{S7}$$

$$k_{2t} = \frac{1}{C_{t}} - \frac{1}{C_{0}}$$
(S8)

Figure S7. (a) The pseudo-first-order kinetic curves and (b) the pseudo-second-order-kinetic curves of TC degradation over OP-MOFs derived from PET powders. ($[TC]_0 = 20 \text{ mg/L}, 50 \text{mL}, [MOF]_0 = 2 \text{ mg}, 25 \text{ °C}, 5 \text{W UV-light}$)

Figure S8. (a) Removal efficiency and (b) the pseudo-first-order kinetic curves of TC degradation over MOFs derived from PET powders. ($[MOF]_0 = 3 \text{ mg}, [TC]_0 = 20 \text{ mg/L}, 50 \text{mL}, 25 ^{\circ}C, 5W UV-light$)

Figure S9. LC-MS of decomposition products of TC photocatalysis for 2 h over OP-MIL-53(Al, Fe).

Figure S10. DRS absorbance spectrum for OP-MIL-53(Al, Fe) measured over the range of wavelength 250-800 nm.

Figure S11. Photocatalytic removal of TC and UV spectra of TC degradation over ZnO and OP-MIL-53(Al, Fe) under 5W UV light ([TC]0 = 20 mg/L, 50mL, m(catalyst) = 2 mg, 25 °C).

Figure S12. Removal efficiency of ceftriaxone sodium degradation over MOFs derived from PET powders. ($[MOF]_0 = 3 \text{ mg}$, [ceftriaxone sodium]_0 = 20 mg/L, 50mL, 25 °C, 5W UV-light)

Catalyst	Pseudo-first-o moo	order kinetic del	Pseudo-second-order kinetic model		
	k ₁ (mg ⁻¹)	R ²	k ₂ (g·min ⁻¹ mg ⁻¹)	R ²	
OP-MIL-101(Cr)	0.02234	0.94487	0.00568	0.98567	
OP-UiO-66(Zr)	0.01839	0.97137	0.00315	0.98408	
OP-UiO-66(Ce)	0.02083	0.89943	0.00606	0.84216	
OP-MIL-53(Al)	0.01965	0.95572	0.00416	0.98493	
OP-MIL-53(Al, Fe)	0.02513	0.96047	0.00791	0.94692	
OP-MIL-53(Al, Fe)- Bottles	0.02720	0.97396	0.00829	0.93607	
OP-MIL-53(Al, Fe)- Textiles	0.02543	0.98635	0.01192	0.9559	
OP-MIL-53(Al, Fe)/Vis	0.03202	0.99409	0.00929	0.90988	
OP-MIL-53(Al, Fe)- Textiles/Vis	0.03237	0.96154	0.01217	0.97016	

Table S3. Kinetic parameters of the adsorption of TC on obtained MOFs.

Catalyst	System	Mass ratio of cat./TC	TC removal rates,	Pseudo-first- order kinetic	Ref.
OP-MIL-53(Al, Fe)	Xe lamp (300 W)	2.0	Time 93.3%, 60min	0.0324	this work
OP-MIL-53(Al, Fe)- Textiles	Xe lamp (300 W)	2.0	90.8%, 60min	0.0320	this work
TP-MIL-53(Al, Fe)	UV light (5 W)	3.0	95.9%, 60min	0.0365	this work
Cu doped MIL- 101(Fe)	Xe lamp (300 W)+6 mM PS	2.0 (PS = 6 mM)	94.32%, 120min	0.0321	14
MIL-53(Fe)/bulk g- C ₃ N ₄	Xe lamp (300 W)+60 mM H ₂ O ₂	37.5	100%, 60 min	0.0689	15
MIL-53(Fe, Al)	mercury lamp (500 W)	7.1	94.33%, 50 min	0.1	16
Ni-MOF + CB evaporator	solar+PMS	20	82%, 60 min	0.0115	17
MIL-101(Fe)@MIL- 100(Fe)	Xe lamp (300 w)	2.5	80%, 140 min	0.0094	18
g-C ₃ N ₄ /PDI@NH ₂ - MIL-53(Fe)	LED lamp (5 W)+10 mM H ₂ O ₂	8	90%, 60 min	-	19
Fe-MOF	LED lamp (5 W)+3.75 mM H ₂ O ₂	0.36	99.8%, 5min	-	20
Zr-MOF	UV-Vis	50	91.8%, 60 min	0.032	21

Table S4. Comparison of reported MOF catalysts for the photocatalytic degradation of TC.

References

1 J. Liu, Y. Wei, M. Chang, N. Wang, D. Wang and J.-X. Wang, *AIChE J.*, 2022, **68**, e17522.

2 K. Wang, C. Li, Y. Liang, T. Han, H. Huang, Q. Yang, D. Liu and C. Zhong, *Chem. Eng. J.*, 2016, **289**, 486-493.

3 M. Stawowy, M. Róziewicz, E. Szczepańska, J. Silvestre-Albero, M. Zawadzki, M. Musioł, R. Łuzny, J. Kaczmarczyk, J. Trawczyński and A. Łamacz, *Catalysts*, 2019, **9**, 309-328.

4 C.-X. Yang, H.-B. Ren and X.-P. Yan, Anal. Chem., 2013, 85, 7441-7446.

5 X. Chen, X. Liu, L. Zhu, X. Tao and X. Wang, *Chemosphere*, 2022, **291**, 133032.

6 M. J. Kang, H. J. Yu, J. Jegal, H. S. Kim and H. G. Cha, *Chem. Eng. J.*, 2020, **398**, 125655.

7 W. Yang, R. Liu, C. Li, Y. Song and C. Hu, *Waste Manage.*, 2021, **135**, 267-274.

8 M. Yan, Y. Yang, F. Chen, D. Hantoko, A. Pariatamby and E. Kanchanatip, *Environ. Sci. Pollut. Res.*, 2023, **30**, 102560-102573.

 F. Liu, X. Cui, S. Yu, Z. Li and X. Ge, J. Appl. Polym. Sci., 2009, 114, 3561-3565.

10 P. Pereira, P. E. Savage and C. W. Pester, ACS Sustain. Chem. Eng., 2023, 11, 7203-7209.

11 C. N. Onwucha, C. O. Ehi-Eromosele, S. O. Ajayi, M. Schaefer, S. Indris andH. Ehrenberg, *Ind. Eng. Chem. Res.*, 2023, 62, 6378-6385.

12 W. Yang, J. Wang, L. Jiao, Y. Song, C. Li and C. Hu, *Green Chem.*, 2022, 24, 1362-1372.

13 H. Abedsoltan, I. S. Omodolor, A. C. Alba-Rubio and M. R. Coleman, *Polymer*, 2021, 222, 123620.

14 L. L. Ma, J. Y. Xu, Y. C. Liu, Y. T. An, Z. C. Pan, B. Yang, L. L. Li, T. Hu and B. Lai, *Sep. Purif. Technol.*, 2023, **305**, 112450.

15 Y. Pan, X. Hu, M. Bao, F. Li, Y. Li and J. Lu, Sep. Purif. Technol., 2021, 279, 119661.

16 X. Chen, X. Liu, L. Zhu, X. Tao and X. Wang, Chemosphere, 2022, 291,

133032.

17 Z. F. Fan, P. P. He, H. Y. Bai, J. Liu, H. J. Liu, L. J. Liu, R. Niu and J. Gong, *EcoMat*, 2023, **6**, e12422.

18 Y. N. Jin, X. C. Mi, J. L. Qian, N. Ma and W. Dai, ACS Appl. Mater. Inter., 2022, 14, 48285-48295.

19 Y. Y. Li, Y. Fang, Z. L. Cao, N. J. Li, D. Y. Chen, Q. F. Xu and J. M. Lu, *Appl. Catal. B: Environ.*, 2019, **250**, 150-162.

20 P. D. Liu, Y. Chen, Liu, AG, Z. T. Chen and B. Li, *J. Mat. Chem. A*, 2023, **11**, 25322-25331.

21 S. P. Tripathy, S. Subudhi, A. Ray, P. Behera, J. Panda, S. Dash and K. Parida, *J. Colloid Interf. Sci.*, 2023, **629**, 705-718.