Supporting Information

Tough, Recyclable and Degradable Plastics with Multi-functions Based on Supramolecular Covalent Adaptive Networks

Shi-Yi Chen,^a Sumaira Noor,^b Zhen Li,^b Zi-Han Zhao*^c and Cheng-Hui Li*^a

Affiliations:

^aState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China.

^bState key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China.

^cSchool of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.

*Correspondence to: ZihanZhao@njust.edu.cn; chli@nju.edu.cn

Figure S1. ¹H NMR (400 MHz, DMSO-d₆) spectrum of P (AA-co-AAm-co-6CI), AA, and AAm, and ¹H NMR (400 MHz, CDCl₃) spectrum of 6CI.

Figure S2. Fourier Transform infrared spectroscopy (FTIR) spectra of PPVA-BO, PPVA-L and PPVA-BOL.

Figure S3. Typical cyclic stress-strain tests of the PPVA-BOL and PVA-BOL.

Figure S4. Storage modulus of PPVA-BOL and PVA-BOL by dynamic mechanical analysis.

Figure S5. (a) The PPVA-BO plastic, (b) and the PPVA-BOL plastic were placed on the pattern of the Nanjing University logo, respectively.

Figure S6. Scanning electron microscopy images of the PPVA-BOL plastic at different microscopic scales.

Figure S7. Puncture curve of the PPVA-BOL.

Figure S8. Thermal gravimetric analysis curve of the PPVA-BOL.

Figure S9. The PPVA-BOLs were immersed in water and different organic solvents for 0, 1, 16 and 96 h.

Figure S10. Stress-strain curves of the original sample with 10% water content and the sample placed in a constant humidity chamber at 60% humidity for two months.

Figure S11. (a) The stress relaxation, (b) and calculated activation energy of PPVA-L.

Figure S12. (a) The stress relaxation, (b) and calculated activation energy of PPVA-BO.

Figure S13. Heat-pressing of the completely dried PPVA-BOL.

Figure S14. Stress-strain curves of the original sample and the sample after 1 and 5 times of hot press recycling.

Figure S15. FTIR spectra of samples before and after water recycling.

PPVA-BO

PPVA-BOL

Figure S16. Photographs of banknotes covered with the PPVA-BO film and the PPVA-BOL film with 365

nm UV irradiation.

Figure S17. The radical scavenging rates after 3.5 h with different concentrations of PPVA-BOL aqueous solutions.

 Table S1. Creep rates of the PPVA-BOL plastic in different temperatures.

Temperature (°C)	$\dot{\varepsilon} (\% \text{ s}^{-1})$
60	1.5×10-5
80	5.8×10 ⁻⁵
100	2.9×10 ⁻⁴

Table S2. Changes in mass, water absorption and water content of the PPVA-BOL plastic placed in a constant humidity chamber at 60% humidity for various days.

 Time (day)
 m (g)
 Water absorption
 Water content (%)

 rate (g day⁻¹)

0	0.7873	0	0
1	0.8619	0.0746	8.61
2	0.8928	0.0309	11.82
4	0.9039	0.0056	12.90
15	0.9515	0.0043	17.26
60	1.1045	0.0034	28.72

Table S3. Dissolution time of PVAs in water with different molecular weights and hydrolysis degrees.

Molar mass (g/mol)	Hydrolysis (%)	Water dissolution time	
		(min)	
9500	80	28	
27000	88	19	
100000	99	slight swelling	

Movie S1. The PPVA-BOL film dissolved quickly in hot water at 85 $^{\circ}$ C.

Movie S2. The PPVA-BOL film underwent multiple folding and bending without deformation.