Supplementary Information

Modulation of Lithium Iron Phosphate Electrode Architecture by Magnetic Ordering for Lithium-Ion Batteries

Wontak Kim,^{a,b} Chihyun Hwang,^a Yong Min Kim,^c Ji-Sang Yu,^a Young-Jun Kim,^{b,d*} Ki Jae Kim, c,d^* , and Hyun-seung Kim^{a*}

^a Advanced Batteries Research Center, Korea Electronics Technology Institute, 25, Saenari-ro, Seongnam 13509, Republic of Korea.

^b SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea.

^cDepartment of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea. ^d SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon 16419, Republic of Korea.

> * Corresponding Authors: yjkim68@skku.edu, kijaekim@skku.edu, hskim0113@keti.re.kr

Experimental section

1. Electrode casting and pouch-cell fabrication

The positive electrode was prepared using a dispersion of $LiFePO₄ (LFP, Johnson Matthew),$ Super P (TIMCAL), and polyvinylidene fluoride (PVdF, Solef-5130, Solvey) in *N*-methyl-2 pyrrolidone (NMP, Sigma-Aldrich) at a *wt*. % of 90:5:5. The LFP electrodes were identically fabricated with 90:5:5 with LFP: flake graphite (TIMCAL, SFG-6) or $Fe₃O₄$ (Sigma Aldrich, 50-100 nm sized) : PVdF composition. The resulting slurry was cast on an Al foil and subjected to magnetic treatment with a neodymium magnet during drying. The cast electrode was predried at 80 °C and dried under vacuum for 12 h at 120 °C before cell fabrication. The electrode was pressed to reach the electrode density with 2.0 g cm⁻³. The negative electrode was composed of graphite (BTR), Super P (TIMCAL), styrene-butadiene rubber (SBR, Sigma-Aldrich), and carboxymethyl cellulose (CMC, Sigma-Aldrich) (SBR: CMC = 1:1 weight ratio) at a *wt*. % of 90:5:5. The water-based slurry was cast on a Cu foil and the coated electrode was pre-dried at 80 °C under vacuum for 12 h before cell assembly. A monolayered pouch cell was assembled with the positive electrode, polyethylene (PE) separator, and negative electrode. The cell had a negative to positive electrode capacity ratio (N/P ratio) of 1.08.

2. Electrochemical characterization of pouch cells

Electrochemical characterization of the graphite/LFP pouch cells was conducted. A blend of 1.0 M LiPF₆ in ethylene carbonate (EC)/ethyl methyl carbonate (EMC) (3:7 = v/v) was injected to soak the electrode and separator into the electrolyte. Subsequently, the pouch cell was constructed after 24 h of aging in room temperature. The pouch cells were subjected to 0.1 *C* constant current (CC)-constant voltage (CV) cycles at a voltage range of 2.5–3.8 V at a cut off of 0.05 *C* using a galvanostatic cycler (TOYO, Japan). After cell formation, 1.0 *C* CC–CV charge (0.05 *C* cut-off) and 1.0 *C* discharge currents were applied to evaluate the cycle

performance. The direct current resistance (DC-*iR*) was measured by applying 2.5 *C* of current pulse with 1 min and 30 min of rest periods at an SOC of 50%. EIS was performed within the frequency range of 3.0 MHz–1.0 mHz using LFP/LFP symmetric cells with a 2032 coin-cell structure. The SOC of the charged pouch cells was 50% and the voltage amplitude was 5.0 mV. Galvanostatic intermittent titration technique was applied to compare the developed polarization at pristine and magnet-treated electrodes. The 10 min of 16 mA g^{-1} CC and 30 min of rest period was performed with lithiation step of the LFP electrodes. The polarization was calculated by subtracting closed-circuit voltages from quasi open-circuit voltages.

3. Morphology and surface analysis

Structural analysis of the electrode was conducted via X-ray microscopy (SKYSCAN 2214 CMOS). The surface composition of the cycled electrode was analyzed via XPS (ThermoFisher). The analyzed electrodes were disassembled in an Ar-filled glove box and washed with EMC solvents. The positive electrodes were examined via SEM (JEOL) after polishing their cross-sectional areas.

Figure S1 (a) XRD and (b) Raman spectrum obtained from the carbon additive

Figure S2 Voltage profiles from the Li/LFP cell with pristine, one-side and both-side magnet treated electrodes

Figure S3. Time *versus* voltage curves obtained from the galvanostatic intermittent titration technique evaluation at Li/LFP coin cell

Figure S3 Voltage profiles from the graphite/LFP cell employing pristine and magnet treated LFP electrodes

Figure S4 Energy efficiency obtained from the graphite/LFP cell with pristine and magnetically ordered LFP electrodes

Figure S5. SEM images of flake graphite, pristine LFP electrode with flake graphite, and the magnetic field applied LFP electrode with flake graphite

Figure S6. SEM images of applied Fe₃O₄ powder, pristine LFP electrode with Fe₃O₄, and the magnetic field applied LFP electrode with $Fe₃O₄$ at topmost and cross-section

Figure S7. Initial formation voltage profiles obtained from the graphite/LFP pouch cells with differently designed electrodes.

Table S1. Design parameter of the evaluated graphite/LFP pouch cell