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1. Experimental

1.1 Physical characterizations

The structural morphologies of the samples were observed with transmission electron microscopy
(TEM, Talos F200X G2, Jeju National University and JEOL JEM-2100F, Daegu Center of the
Korea Basic Science Institute) operating at 200 kV and field emission scanning electron
microscopy (FE-SEM) (TESCAN, MIRA3, Jeju National University, South Korea). The chemical
compositions were evaluated by energy-dispersive spectroscopy (EDS) measurements and
element mapping (TESCAN, MIRA) measurements at 15 kV. High-resolution (HR) brightfield
imaging and combined high-angle annular dark-field (HAADF) scanning were also performed
with Thermo Scientific Talos F200X G2 (Jeju National University, South Korea). X-ray
diffraction (XRD) analysis was performed by using PANanalytical’s Empyrean XRD with Cu Ka
(A=0.15405 nm) radiation in the scan range (20) of 10° to 90°. X-ray photoelectron spectroscopy
(XPS) was conducted using a Theta Probe K-ALPHA+XPS system (Thermo Fisher Scientific.)
with monochromatic Al Ka at a wavelength of 1486.6 eV at 12 kV, KBSI (Korea Basic Science

Institute, Busan Center).

1.2 Electrochemical measurements

Electrochemical measurements such as cyclic voltammetry (CV), galvanostatic charge-discharge
(GCD), and electrochemical impedance spectroscopy (EIS), were carried out using an Auto-Lab
PGSTAT204N, Metrohm electrochemical workstation. These measurements were conducted
using a three-electrode system, where different working electrodes were used as mentioned in their
corresponding sections for different analyses. Platinum wire (2 mm X 10 mm) and Ag/AgCl were
used as counter and reference electrodes respectively. 3M KOH was used as an electrolyte
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throughout the electrochemical characterization. The operating parameters for different
electrochemical analyses such as potential window, scan rates, current densities, etc. are mentioned

in the corresponding sections.
1.3 Calculations
The specific capacity of various electrodes was determined utilizing Equation (S1), employing the

integral area of the discharge curve derived from GCD data:

Ca=2idet (S1)
sav

where C, represents the areal capacity (LAh cm2), i is the applied current(A), [Vdt is the integral
area of the discharge curve (V s), S denotes the area of the working electrode (cm?), and AV

signifies the voltage difference in the discharge plot (V).

The specific capacity, energy density, and power density of the ASCD were derived from the

discharge time extracted from the GCD plot, utilizing the following formulas [39]:

Cascp = —ZIAf AVth (S2)
_IJfvat (S3)

A
P= % (S4)



where Cascp represents the areal capacity (LAh cm™2), E denotes the energy density (WWh cm2),
P signifies the power density (W cm 2), I is the discharge current (A), [Vdt is the area under the
discharge curve (V s), A is the total area of the substrate covered by the active material (cm?), AV

represents the voltage difference in the discharge (V), and t is the discharge time (s) of the ASCD.

Likewise, the Electrochemical Surface Area (ECSA) of different electrodes was determined by
measuring the double-layer capacitance (Cq1) from the non-faradaic regions of CV curves at scan
rates ranging from 10 mV s! to 100 mV s7!, as demonstrated in Figure S6. As governed by
Equation S5, the ECSA is directly proportional to Cqi. This relationship allows the electrocatalytic
activity of the fabricated electrodes to be interpreted based on Cdl values, avoiding any

misinterpretation due to uncertainty in the specific capacitance (Cs) of the material:

C
EcsA =&

Cs (S5)

1.4 Materials

Iron (III) nitrate nonahydrate (Fe(NO)3.9H20, >98%)), nickel nitrate hexahydrate (Ni(NO3)2.6H20),
Ammonium Fluoride ( NH4F, > 98%), Hydro chloric acid (HCl), potassium hydroxide (KOH, >
95%), were purchased from Dae-Jung Chemicals & Metals Co. Ltd., South Korea. Urea
(NH2CONHz, 99%), and ethanol (C2HsOH, 99.5%) were obtained from Samchun, South Korea.
All the chemical compounds were analytical grade and were used without further purification. De-

ionized water was used to make all aqueous solutions.

1.5 Electrode preparation



1.5.1 Substrate preparation (NF)

Before proceeding, the NF was treated with HCL to remove any oxide layers as well as other
impurities deposited on the foam. In a typical process, a 1x 1 cm? NF piece was immersed in a 3.0
M HCI solution and sonicated for 15 minutes. The obtained NF was washed several times with DI

water and ethanol. The cleaned NF was then dried in a vacuum oven at 70 °C for 12 hrs.

1.5.2 Synthesis of FNM on NF

FNM was synthesized by growing FeNi LDH over NF substrate and subsequent annealing at high
temperatures. Firstly, I mmol Fe(NO3)3.9H>0O and 1 mmol Ni(NO3)..6H,O were dissolved with
urea (5 mmol), and NH4F (1.5 mmol) in 40 mL DI water by using a magnetic stirrer for 30 minutes.
After stirring, the solutions were transferred into the 150 mL Teflon tube containing NF and
hydrothermally treated for 12 h at 150 °C. After cooling to room temperature, the FeNi-LDH
grown NF (named FNLDH) was washed several times with DI water, and ethanol and dried at 70
°C overnight. Finally, the FNLDH was calcined at 400 °C for 1 hour under a 100 sccm ammonia-
nitrogen mix gas to get Fe/Ni nanosheets alloy, and the sample was named FNM. The oxygen
functionalized sample (FNMO) was obtained by calcinating the FNM in the air at 400 °C for 1

hour.

1.5.3 Synthesis of FNMS and FNMOS

The FNM and FNMO samples were then sulfurized under hydrothermal conditions with
thioacetamide (0.15g) in DI water (40 mL) at 120 °C for 5 hours. Later the sulfurized samples were
taken out of the hydrothermal reaction vessel, washed with DI water and ethanol, and dried at 70 °C

overnight to finally get FNMS and FNMOS respectively.



1.5.4 Preparation of the negative electrode (CFAC)

To use the CFAC as the negative electrode in a supercapacitor device, the CFAC was mixed with
PVDF and super P at a ratio of 80:10:10 with NMP and brush coated onto the NF substrate of

1x1 cm?. The electrode was dried in a vacuum oven at 100 °C for 10 h.
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Figure S1. Thickness measurement of the FNM nanosheets.
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Figure S2. EDS elemental color mapping shows the presence of different elements,
corresponding EDS spectrum and EDS elemental spectrum plots of (a)FNM, (b) FNMS, and (c)

FNMOS samples.
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Table S1. The weight percentage of different elements in FNM, FNMS, and FNMOS electrodes.
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Figure S4. XRD pattern of FNMS and FNMOS ranging from 34-38 two theta.
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Figure S5. XPS profiles of (a) FNM survey, (b) Fe 2p, (¢) Ni 2p, (d) O 1s, (e) C 1s, and (f) N 1s.
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Figure S6. Comparative XPS spectra of FNM and FNMO O 1s.
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Figure S7. CV curves of different electrodes over non-faradaic regions at various scan rates. (a)
FNM, (b) FNMS, (c) FNMOS. (d) double-layer capacitance measurements of respective electrodes.
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Table S2. Diffusion and capacitive contribution percentage of different electrodes.

FNM FNMS FNMOS

Diffusion  Capacitive  Diffusion  Capacitive  Diffusion  Capacitive

(%) (%) (%0) (%) (%) (%)
38.3 61.7 413 58.7 53.2 46.8
273 72.7 40.3 59.7 43.6 56.4
22.9 77.1 38.9 61.1 39.7 60.3
20.6 79.4 37.6 62.4 40 60

15



200

-2 (Q)

1 2
Z'(Q)

100 150 200
Z'(Q)

Figure S8. EIS spectrum of different electrodes along with equivalent electrical circuit.
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Figure S9. (a) CV, (b) GCD, (c) EIS, and (d) specific capacitance plots of CFAC negative

electrode.
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Figure S10. (a)CV curves of CFAC negative electrode and FNMOS positive electrode at 10 mV
s~! scan rate, (b) Comparison of the discharge plot of the CFAC negative electrode and FNMOS

positive electrode at a current density of 1 mA g ' and 1 mA cm 2 respectively.
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Figure S11. ASCD performance of FNMS//CFAC, (a) CV curves over different potential
windows all conducted at 10 mV s~!, (b) CV curves at different scan rates within the potential
window of 0—-1.6 V, (¢) GCD curves over different current densities, (d) area specific capacity and

coulombic efficiency over different scan rates.
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Figure S12. EIS spectrum of the FNMOS//CFAC ASCD before and after the 25,000 GCD test.
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