Supporting Information for "Enhanced Urea Oxidation Catalysis through Ni Single-Atom Doping on Cu₂O Surfaces: A Computational Study"

Xiaoqing Li,^a Haiping Lin,^b Wenjing Huang,^{a,*} Shiyun Xiong,^{a,*} Shaoming Huang^{a,*}

^a School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, China. E-mail: <u>wjhuang42@gdut.edu.cn</u>; <u>syxiong@gdut.edu.cn</u>; <u>smhuang@gdut.edu.cn</u>.

^b School of Physics and Information Technology, Shaanxi Normal University, Xian 710119, Shaanxi, China.

Fig. S1 Side view of the six low-index surfaces of Cu_2O after relaxation. In the $Cu_2O:\{111\}_{Cu}$ structure, the surface Cu atoms are relaxed to the same atomic plane as the subsurface O atoms.

Fig. S2 Surface reconstruction of Ni-Cu₂O: $\{110\}_{Cu}$ during urea adsorption process. Left: before urea adsorption; Right: after urea adsorption.

Fig. S3 The optimized structures for Ni-Cu₂O: $\{110\}_{Cu}$ and Ni-Cu₂O: $\{111\}_{O}$ under different electric fields.

Fig. S4 TDOS and PDOS of Cu-d, Ni-d, and O-p orbitals in Ni-Cu₂O:{110}_{Cu} (top) and Ni-Cu₂O:{111}_O (bottom). Orange, green, and silver colors denote Ni, Cu, and O atoms, respectively.

Fig. S5 Differential charge density maps for Ni-Cu₂O: $\{110\}_{Cu}$ -NO (a) and Ni-Cu₂O: $\{111\}_{O}$ -O (b). The side and top views are illustrated in (I) and (II) of the corresponding subfigure. In all plots, the isosurface is set to 0.003 eÅ⁻³.

Fig. S6 Schematic diagram of the reaction path flow for the oxidation of urea to N_2 and CO_2 .

Fig. S7 Optimized atomic structures of various intermediates during UOR reaction for(a) Ni-Cu₂O:{110}_{Cu}-NO and (b) Ni-Cu₂O:{111}_O-O.

Fig. S8 Variation of -COHP with energy for the N-H bonds in Ni-Cu₂O:{110}_{Cu}-NO and Ni-Cu₂O:{111}_O-O.

Fig. S9 Gibbs free energies of each intermediate during UOR on Ni: $\{111\}$, Cu₂O: $\{110\}_{Cu}$, and Ni-Cu₂O: $\{110\}_{Cu}$.

a $Cu_2O:{110}_{Cu}$

Fig. S10 Optimized atomic structures of various intermediates during UOR reaction for (a) $Cu_2O:\{110\}_{Cu}$ and (b) Ni: $\{111\}$.

Species	ZPE (eV)	TS (eV)	ZPE (eV)	TS (eV)
	Ni-Cu ₂ O:{110} _{Cu}	Ni-Cu ₂ O:{110} _{Cu}	Ni-Cu ₂ O:{111} ₀	Ni-Cu ₂ O:{111} ₀
*CONH ₂ NH ₂	1.75	0.28	1.74	0.31
*CONH ₂ NH	1.42	0.25	١	\
*CONHNH ₂	1.43	0.25	1.14	0.26
*CONHNH	1.06	0.25	1.06	0.25
*CONH ₂ N	1.06	0.26	١	\
*CONNH ₂	1.10	0.23	1.09	0.23
*CONHN	0.74	0.23	0.72	0.24
*CONNH	0.75	0.21	0.72	0.24
*CONN	0.46	0.13	0.44	0.17
*CO	0.20	0.10	0.2	0.15
Cu*COOH	0.64	0.17	0.61	0.22
Ni*COOH	0.64	0.18	0.56	0.18
Cu*COO	0.31	0.18	0.32	0.19
Ni*COO	0.31	0.16	0.32	0.19

Table S1. Gibbs free energies, zero-point energies, and entropies of the reaction intermediates in Ni-Cu₂O:{111}_O and Ni-Cu₂O:{110}_{Cu} catalysts.

Table S2. The d-band center ε_d of the active sites before and after urea molecules adsorption. For urea molecules adsorbed by dual active sites, we adopt the method in Ref [1].

Catalyst	ε_d (eV) before adsorption	$\varepsilon_d(eV)$ after adsorption
Ni-Cu ₂ O:{110} _{Cu}	-1.47	-1.77
Ni-Cu ₂ O:{111} ₀	-1.21	-1.02

Table S3. Comparison of urea adsorption energy, overpotential, and CO₂ desorption energy in various UOR electrocatalysts reported in literatures. The UOR mechanisms in literatures include both conventional adsorption mechanisms and lattice oxygen mechanisms (LOM). The ΔG_{max} of dehydrogenation epresents the maximum dehydrogenation reaction energy.

Catalyst	ΔG_{max} of	CO ₂ desorption	Overpotential	Ref.
	dehydrogenation	energy	(V)	
	(eV)	(eV)		
Ni-Cu ₂ O:{110} _{Cu}	0.66	0.58	0.29	This work
NiOOH	1.44	0.9	1.07	[2]
NiOO (LOM)	0.96	0.4	0.59	[2]
LNO-2	0.69	1.05	0.68	[3]
LNO-2 (LOM)	0.69	0.11	0.32	[3]
CoNi@CN-CoNiMoO	1.15	-0.32	0.78	[4]
Ovac-V-Ni(OH)2	2.35	0.67	1.98	[5]
Ac-CoOCl-V	2.05	-0.74	1.68	[6]
Ru-Co DAS/NiO	1.63	0.56	1.26	[7]

Table S4. Calculated d-band centers for *COO intermediate. For Ni-Cu₂O: $\{111\}_O$ -Cu*COO, CO₂ is adsorbed solely by a Cu atom, while for other structures, CO₂ is adsorbed by multiple active sites.

Species	$\varepsilon_d(eV)$
Ni-Cu ₂ O:{110} _{Cu} -Ni*COO	-1.41
Ni-Cu ₂ O:{110} _{Cu} -Cu*COO	-1.82
Ni-Cu ₂ O:{111} ₀ -Ni *COO	-1.53
Ni-Cu ₂ O:{111} ₀ -Cu*COO	-1.67

Species	ZPE (eV)	TS (eV)	ZPE (eV)	TS (eV)
	Ni:{111}	Ni:{111}	$Cu_2O:\{110\}_{Cu}$	$Cu_2O:{110}_{Cu}$
*CONH ₂ NH ₂	1.71	0.2	1.73	0.30
*CONH ₂ NH	1.40	0.25	1.45	0.21
*CONHNH	1.07	0.20	1.16	0.25
*CONNH	0.72	0.17	0.78	0.16
*CONN	0.43	0.14	0.46	0.14
*C0	0.19	0.14	0.19	0.18
*COOH	0.59	0.16	0.59	0.16
*C00	0.28	0.18	0.29	0.23

Table S5. Gibbs free energies, zero-point energies, and entropies of the reaction intermediates for Ni: $\{111\}$ and Cu₂O: $\{110\}_{Cu}$ catalysts.

References:

- 1 S. Ponath, M. Menger, L. Grothues, M. Weber, D. Lentz, C. Strohmann and M. Christmann, *Angew. Chem. Int. Ed.*, 2023, **62**, e202216920.
- 2 L. Zhang, L. Wang, H. Lin, Y. Liu, J. Ye, Y. Wen, A. Chen, L. Wang, F. Ni, Z. Zhou, S. Sun, Y. Li, B. Zhang and H. Peng, *Angew. Chem. Int. Ed.*, 2019, **58**, 16820-16825.
- 3 W.-K. Han, J.-X. Wei, K. Xiao, T. Ouyang, X. Peng, S. Zhao and Z.-Q. Liu, *Angew. Chem. Int. Ed.*, 2022, **61**, e202206050.
- 4 G. Qian, J. Chen, W. Jiang, T. Yu, K. Tan and S. Yin, Carbon Energy, 2023, 5, e368.
- 5 H. Qin, Y. Ye, J. Li, W. Jia, S. Zheng, X. Cao, G. Lin and L. Jiao, *Adv. Funct. Mater.*, 2023, **33**, 2209698.
- 6 B. Zhang, C. Pan, H. Liu, X. Wu, H. Jiang, L. Yang, Z. Qi, G. Li, L. Shan, Y. Lin, L. Song and Y. Jiang, *Chem. Eng. J.*, 2022, **439**, 135768.
- 7 X. Zheng, J. Yang, P. Li, Z. Jiang, P. Zhu, Q. Wang, J. Wu, E. Zhang, W. Sun, S. Dou, D. Wang and Y. Li, *Angew. Chem. Int. Ed.*, 2023, **62**, e202217449.