Electronic Supplementary Information

Nickel doped Lithium-vacant Layered Li_vCr_{1-x}Ni_xO₂: A Potentially Active

Electrocatalyst for Oxygen Evolution Reaction

Vaishali Soni, ^a Shraddha Jaiswal,^a Krishna Gopal Nigam,^b Preetam Singh,^b & Asha

Gupta^a*

^a Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221005, India.

^b Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi-

221005, India.

AUTHOR INFORMATION

*Corresponding Author:

Email- asha.chy@itbhu.ac.in, toashagupta@gmail.com, Phone: +91 6390363140.

Electrochemical active surface area (ECSAs):

The ECSAs were determined by measuring the electrochemical double-layer capacitance (C_{dl}) in non-faradic potential regions of 0.9–0.1 V vs. Ag/AgCl at scan rates of 50, 70, 100, 120, 140, 160 mV s⁻¹. The C_{dl} values were calculated by plotting the current density differences (i_c = $\Delta J/2$) against scan rates (v), where the slope represents C_{dl} , and given by the following equation:

$$i_c = C_{dl} \nu \dots (Eq.1)$$

The ECSA of the catalysts was calculated by using the following formula:

$$ECSA = \frac{C_{dl}}{C_s} \dots \dots \dots \dots \dots (Eq.2)$$

Where C_s is the specific capacitance of the material per unit area under identical electrolyte conditions. $C_s = 0.040 \text{ mF cm}^{-2}$ in 1.0 M KOH based on reported values [1].

Turnover frequency (TOF) calculation:

Turnover frequency of the synthesized catalysts was calculated at 350 mV overpotential based on the method reported in previous works [2]. This calculation assumes 100% Faradaic efficiency:

$$TOF = \frac{N_{O2}}{N_M}$$
.....(Eq.3)

where N_{O2} is the number of O_2 turnovers, calculated using the following formula:

$$N_{02} = j \left(mA \ cm^{-2} \right) \times \left(A \ cm_{oxide}^{2} \right) \times \left(\frac{1 \ Cs^{-1}}{1000 \ mA} \right) \times \left(\frac{1 \ mol \ e^{-}}{96485 \ C} \right) \times \left(\frac{1 \ mol \ 0_{2}}{4 \ mol \ e^{-}} \right) \times N_{A} \dots (Eq.4)$$

where, j is the measured current density at 350 mV overpotential, A is the surface area of carbon electrode (1 cm²), and N_A is Avogadro constant ($6.02 \times 10^{23} \text{ mol}^{-1}$).

 N_M is the number of active metal ions (Cr and Ni) for OER, which is calculated based on the mass loading of the samples (1 mg/cm²) using the following formula:

For LCNO-0(c): (ICP composition = $Li_{0.769}Cr_{1.003}O_2$)

$$N_{M} = (1.003Cr) \times (1 \times 10^{-3}g) \times \frac{N_{A}}{molecular \ weight}$$

 $N_M = 0.0675 \times 10^{20}$

j = 11.74 mA cm⁻² at 350 mV overpotential.

$$N_{02} = 11.74 \ (mA \ cm^{-2}) \times \left(1 \ cm_{oxide}^{2}\right) \times \left(\frac{1 \ Cs^{-1}}{1000 \ mA}\right) \times \left(\frac{1 \ mol \ e^{-}}{96485 \ C}\right) \times \left(\frac{1 \ mol \ 0_{2}}{4 \ mol \ e^{-}}\right) \times N_{A}$$
$$N_{02} = 0.1831 \ \times 10^{17}$$

$$TOF = \frac{0.1831 \times 10^{17}}{0.0676 \times 10^{20}} = 2.712 \times 10^{-3} \, s^{-1}$$

For LCNO-10(c): (ICP composition = $Li_{0.698}Cr_{0.903}Ni_{0.098}O_2$)

$$N_M = (0.903Cr + 0.098Ni) \times (1 \times 10^{-3}g) \times \frac{N_A}{molecular \ weight}$$
$$N_M = 0.0674 \times 10^{20}$$

 $j = 40.6 \text{ mA cm}^{-2} \text{ at } 350 \text{ mV}$ overpotential.

$$N_{02} = 40.6 \ (mA \ cm^{-2}) \times \left(1 \ cm_{oxide}^{2}\right) \times \left(\frac{1 \ Cs^{-1}}{1000 \ mA}\right) \times \left(\frac{1 \ mol \ e^{-}}{96485 \ C}\right) \times \left(\frac{1 \ mol \ O_{2}}{4 \ mol \ e^{-}}\right) \times N_{A}$$

$$N_{02} = 0.6334 \times 10^{17}$$

$$TOF = \frac{0.6334 \times 10^{17}}{0.0674 \times 10^{20}} = 9.397 \times 10^{-3} \, \text{s}^{-1}$$

Determination of Faradaic Efficiency:

The faradaic efficiency of catalyst was determined by conducting the rotating ring-disk electrode (RRDE) experiment on an electrochemical work station based on Pine research

equipment (Wave Driver 200, USA). The experiment was performed using a rotating ring-disk electrode (RRDE) as working electrode that consists of a Pt ring and glassy carbon disk (0.196 cm²), a Hg/HgO reference electrode and Pt wire counter electrode in 1 M KOH electrolyte. About 10 mg of LCNO-10(c) and 3 mg activated carbon were added in 1ml of water/isopropanol (3:1) solution containing 15 μ l of Nafion binder, and dispersed by sonicating for 30 min to generate homogenous catalyst ink. About 10 μ l of catalyst ink was coated onto the GC disk (RRDE) with a catalyst loading amount of ~0.5 mg cm⁻². An LSV curve was recorded at a scan rate of 5 mV s⁻¹ with a rotation rate of 1400 rpm by sweeping the potential at the disk from 1.0 to 1.8 V vs. RHE, and the O₂ molecules that evolved were reduced at the Pt ring, where a potential of -0.5 V was kept constant to enable an efficient oxygen reduction reaction (ORR). The calculation of the faradaic efficiency was performed using the following equation [3]:

Faradaic Efficiency =
$$\frac{j_R \times n_D}{j_R \times n_R \times N_{CL}}$$
.....(Eq.5)

where, j_R and j_D are the ring and disk current densities at a particular potential, n_D and n_R are the number of electrons transferred during the evolution and reduction of O_2 at disk and ring, respectively, which is 4. N_{CL} is the collection efficiency of the RRD electrode. The average collection efficiency of the RRDE used here is 0.439.

For LCNO-10(c): at 1.6 V vs. RHE

$$FE = 13.2 \times 4 / 32.9 \times 4 \times 0.439$$
$$= 0.9139 \times 100$$
$$= 91.39 \%$$

Fig. S1 Rietveld refined powder XRD patterns of $\text{Li}_y \text{Cr}_{1-x} \text{Ni}_x \text{O}_2$ ($y \le 1, 0 \le x \le 0.2$). (a) solid-state and (b) solution combustion synthesized samples.

Fig. S2 SEM micrograph of **(a)** LCNO-10(c), **(b)** LCNO-20(s), **(c)**, **(d)** elemental mapping of individual elements (O, Cr, and Ni) present in the LCNO-10(c) and LCNO-20(s) samples, respectively, and **(e)**, **(f)** EDS spectrum of LCNO-10(c) and LCNO-20(s). Note: Li signals are absent in EDS analysis as EDS techniques are not capable of recording signals for the Li core level.

Fig. S3 Determination of double layer capacitance (C_{dl}) of different LCNOs (synthesized by solid-state and combustion method) and commercial RuO₂. **(a-g)** CV measurements in a non-faradic current region (0.9-1.0 V vs. RHE) at scan rates of 50, 100, 120, 140 and 160 mV s⁻¹in 1 M KOH electrolyte.

Fig. S4 The RRDE polarization at GC disk and the corresponding ORR response at Pt ring obtained with LCNO-10(c) for faradaic efficiency calculation.

Fig. S5 Stability test (a) chronoamperogram of LCNO-10(c) at measured potential of 1.5, 1.6 and 165 V vs. RHE for 200 hrs, (b) chronoamperogram of LCNO-20(s) at measured potential of 1.56, 1.65 and 1.72 V vs. RHE for 200 hrs, and (c), (d) shows the linear sweep voltammograms for the 1st, 100th, 500th and 1000th cycle at a scan rate of 100 mV s⁻¹. (Note: the long-term chronoamperometry test was performed using Hg/HgO reference electrode).

Fig. S6 Post-OER SEM micrographs of **(a)** LCNO-10(c), **(b)** LCNO-20(s), **(c)**, **(d)** corresponding elemental mapping and **(e)**, **(f)** EDS spectrum confirming the presence of O, Cr, and Ni in the LCNO-10(c) and LCNO-20(s) electrodes, respectively. Note: Li signals are absent in EDS analysis as EDS techniques are not capable of recording signals for the Li core level.

Figure S7 Post-OER XRD pattern of LCNO-10(c) and LCNO-20(s) electrodes.

Fig. S8 Post-OER TEM micrographs. (a), (b) Bright-field TEM image, (c), (d) HR-TEM with interplanar d-spacing of (003) plane, (e), (f) SAED pattern of LCNO-10(c) and LCNO-20(s) samples, respectively.

Fig. S9 Post-OER (a) Cr(2p) and (b) Ni(2p) spectra of LCNO-10(c) and LCNO-20(s) electrodes.

Table S1. XPS deconvoluted peak positions and % composition in Cr(2p) spectra for $Li_yCr_{1-x}Ni_xO_2$ ($y \le 1, 0 \le x \le 0.2$) synthesized by combustion and solid-state method.

Samples			Binding en	Relative	
			2 <i>p</i> _{3/2}	2 <i>p</i> _{1/2}	concentration (%)
	LCNO-0(s)	Cr ³⁺	575.3	585.4	89
thod		Cr ⁶⁺	577.5	587.4	11
e me	LCNO-10(s)	Cr ³⁺	575.7	585.6	81
Solid stat		Cr ⁶⁺	577.6	587.6	19
	LCNO-20(s)	Cr ³⁺	575.8	585.8	74
		Cr ⁶⁺	577.7	587.7	26
Combustion method	LCNO-0(c)	Cr^{3+}	575.6	585.3	86
		Cr ⁶⁺	577.5	587.2	14
	LCNO-10(c)	Cr ³⁺	575.9	585.7	67
		Cr ⁶⁺	577.4	587.3	33
	LCNO-20(c)	Cr ³⁺	575.7	585.5	71
		Cr ⁶⁺	577.4	587.4	29

Samples			Binding energy (eV)				Relative
			2 <i>p</i> _{3/2}	2 <i>p</i> _{1/2}	S1	S2	concentration (%)
e method	LCNO-10(s)	Ni ³⁺	855.3	873.1	861.4	878.9	76
		Ni ²⁺	853.6	871.4	859.3	877.0	24
d stat	LCNO-20(s)	Ni ³⁺	855.4	873.3	861.1	879.0	81
Soli		Ni ²⁺	853.8	871.3	859.4	877.1	19
_	LCNO-10(c)	Ni ³⁺	855.5	873.3	861.2	879.2	90
ustior hod		Ni ²⁺	853.9	871.6	859.2	877.1	10
Comb	LCNO-20(c)	Ni ³⁺	855.4	873.4	861.1	879.1	85
		Ni ²⁺	853.7	871.5	859.3	877.2	15

Table S2. XPS deconvoluted peak positions and % composition in Ni(2*p*) spectra for $\text{Li}_y \text{Cr}_{1-x} \text{Ni}_x \text{O}_2(y \le 1, 0 \le x \le 0.2)$ synthesized by combustion and solid-state method.

Table S3. The fitted R_{ct} values from the Nyquist plot for $Li_yCr_{1-x}Ni_xO_2$ ($y \le 1, 0 \le x \le 0.2$) catalysts synthesized by combustion and solid-state method.

Solid-state synthesized samples (s)	$R_{ct}(\Omega)$	Combustion synthesized samples (c)	$R_{ct}(\Omega)$
LCNO-0(s)	37.03	LCNO-0(c)	19.25
LCNO-5(s)	23.66	LCNO-5(c)	14.65
LCNO-10(s)	20.43	LCNO-10(c)	6.6
LCNO-15(s)	16.24	LCNO-15(c)	8.85
LCNO-20(s)	11.36	LCNO-20(c)	12.3

Table S4. Tafel slope and R_{ct} values of synthesized catalysts along with commercial RuO_2 (as a benchmark catalyst).

Catalysts	Tafel slope (mV dec ⁻¹)	$R_{ct}(\Omega)$
RuO ₂	83	17.33
LCNO-10(c)	63	6.6
LCNO-20(c)	79	12.3
LCNO-10(s)	85	20.43
LCNO-20(s)	95	11.36

Catalyst	C _{dl} (mF cm ⁻²)	ECSA (cm ² mg ⁻¹)
LCNO-0(c)	1.53	38.25
LCNO-10(c)	3.2	80
LCNO-20(c)	2.8	70
LCNO-0(s)	1.13	28.25
LCNO-10(s)	1.3	32.5
LCNO-20(s)	2.3	57.5
RuO ₂	7.9	197.5

Table S5. Calculated C_{dl} and ECSA values for $Li_yCr_{1-x}Ni_xO_2$ ($y \le 1$, $0 \le x \le 0.2$) catalysts synthesized by combustion and solid-state method along with commercial RuO₂ (as a benchmark catalyst).

Table S6: Turnover frequencies (TOF) of different $\text{Li}_y \text{Cr}_{1-x} \text{Ni}_x \text{O}_2$ ($y \le 1, 0 \le x \le 0.2$) catalysts synthesized by combustion and solid-state method.

Samples		ICP composition	No. of O ₂ turnover (N _{O2})	No. of active metal ions (N _M)	TOF (s ⁻¹)
q	LCNO-0(c)	Li _{0.769} Cr _{1.003} O ₂	0.1831×10 ¹⁷	0.0675×10 ²⁰	2.71×10-3
netho	LCNO-5(c)	Li _{0.799} Cr _{0.949} Ni _{0.049} O ₂	0.2802×10 ¹⁷	0.0669×10 ²⁰	4.19×10 ⁻³
stion	LCNO-10(c)	Li _{0.698} Cr _{0.903} Ni _{0.098} O ₂	0.6334×10 ¹⁷	0.0674×10 ²⁰	9.39×10 ⁻³
Combu	LCNO-15(c)	Li _{0.778} Cr _{0.851} Ni _{0.148} O ₂	0.4725×10 ¹⁷	0.0666×10 ²⁰	7.09×10 ⁻³
	LCNO-20(c)	Li _{0.749} Cr _{0.801} Ni _{0.199} O ₂	0.3929×10 ¹⁷	0.0665×10 ²⁰	5.91×10 ⁻³
Solid-state method	LCNO-0(s)	Li _{0.669} Cr _{1.003} O ₂	0.0659×10 ¹⁷	0.0679×10 ²⁰	0.98×10 ⁻³
	LCNO-5(s)	Li _{0.749} Cr _{0.949} Ni _{0.051} O ₂	0.1635×10 ¹⁷	0.0672×10 ²⁰	2.43×10-3
	LCNO-10(s)	Li _{0.731} Cr _{0.902} Ni _{0.098} O ₂	0.1527×10 ¹⁷	0.0671×10 ²⁰	2.27×10-3
	LCNO-15(s)	Li _{0.720} Cr _{0.851} Ni _{0.149} O ₂	0.2193×10 ¹⁷	0.0668×10 ²⁰	3.28×10-3
	LCNO-20(s)	Li _{0.698} Cr _{0.801} Ni _{0.198} O ₂	0.2608×10 ¹⁷	0.0667×10 ²⁰	3.91×10 ⁻³

Samples		Post-OER ICP composition of $\text{Li}_y \text{Cr}_{1-x} \text{Ni}_x \text{O}_2$ ($y \le 1, 0 \le x \le 0.2$)			
		Li	Cr	Ni	
pc	LCNO-0(c)	0.767	1.001	0.000	
metho	LCNO-5(c)	0.798	0.948	0.048	
stion	LCNO-10(c)	0.696	0.899	0.097	
nqmo	LCNO-15(c)	0.775	0.848	0.147	
Ŭ	LCNO-20(c)	0.745	0.799	0.198	
q	LCNO-0(s)	0.668	1.003	0.000	
netho	LCNO-5(s)	0.748	0.947	0.049	
tate n	LCNO-10(s)	0.718	0.897	0.097	
olid-s	LCNO-15(s)	0.729	0.849	0.148	
\mathbf{N}	LCNO-20(s)	0.695	0.797	0.198	

Table S7. The post-OER ICP analysis of $\text{Li}_y \text{Cr}_{1-x} \text{Ni}_x \text{O}_2$ ($y \le 1, 0 \le x \le 0.2$) synthesized by combustion and solid-state method.

References:

- C. C. L. McCrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters and T. F. Jaramillo, Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices, *J. Am. Chem. Soc.*, 2015, **137**(13), 4347–4357.
- Y. Lin, Z. Tian, L. Zhang, J. Ma, Z. Jiang, B. J. Deibert, R. Ge and L. Chen, Chromiumruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media, *Nature Commun.*, 2019, **10**(1), 162.
- S. Anantharaj, P. E. Karthik and S. Kundu, Petal-like hierarchical array of ultrathin Ni(OH)₂ nanosheets decorated with Ni(OH)₂ nanoburls: a highly efficient OER electrocatalyst, *Catal. Sci. Technol.*, 2017, 7, 882-893.