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Scheme S1. Schematic illustration of the synthesis of OV-ZnV2O4. 
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Fig. S1 High-resolution XPS Zn 2p (a), O 1s (b), and C 1s (c) profiles of OV-ZnV2O4-200.  
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Fig. S2 Thermogravimetric (TG) analyses illustrating the decomposition of precursors 

(Zn(CH3COO)22H2O) + NH4VO3) in the absence (a) and presence (b, c) varying amounts of 

sucrose and the formation of (a) OV-ZnV2O4-0, (b) OV-ZnV2O4-100, and (c) OV-ZnV2O4-200.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TG analyses were performed with the mixture of the precursors (Zn(CH3COO)22H2O) + 

NH4VO3) in the presence of varying amounts of sucrose (0, 100, and 200 mg). Multi-step 

weight loss was observed in all cases. In the absence of sucrose, three distinct weight losses 

were observed (Fig. S2a). The second and third weight losses (200-350°C) overlap when 

sucrose is present. The initial weight loss in step I (<130°C) is attributed to the loss of H2O 

from Zn(CH3COO)2·2H2O (Fig. S2a, b and c). Step II (130°C) corresponds to the loss of NH3 

and structural H2O due to the decomposition of NH4VO3.
1,2 The third weight loss can be 

attributed to the evolution of CO2/O2 and the final stable weight plateau observed above 450°C 

corresponds to the formation of carbon-supported ZnV2O4 as the final product. In the presence 

of sucrose, the well-defined plateau was not observed at the final stage possibly due to the 

presence of sucrose-derived carbon. The weight loss above 350°C in the presence of sucrose is 

associated with further loss of O2. The quantitative analysis of the weight loss at various steps 

confirms that the final product has carbon and OV-ZnV2O4. The % carbon content in the 

presence of sucrose is quantified to be 19.6% and 34.7% for the sample mixture analyzed in 

the presence of 100 and 200 mg of sucrose, respectively.   
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Fig. S3 EPR spectral profile of OV-ZnV2O4-0, OV-ZnV2O4-100, and OV-ZnV2O4-200 at room 

temperature.  
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Fig. S4 (a) High-resolution XPS V 2p profile of OV-ZnV2O4-0, OV-ZnV2O4-100, and OV-

ZnV2O4-200. (b) The bar diagram depicts the % of different oxidation states of V.    
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Fig. S5 High-resolution XPS O 1s profile of OV-ZnV2O4-0 (a), OV-ZnV2O4-100 (b), and (c) 

OV-ZnV2O4-200. 
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Fig. S6 FESEM images of OV-ZnV2O4-0 (a), OV-ZnV2O4-100 (b), and (c) OV-ZnV2O4-200. 
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Fig. S7 HADDF image of OV-ZnV2O4-200 and the corresponding STEM elemental mapping 

image illustrating the distribution of carbon. 
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Fig. S8 (a) Galvanostatic charge-discharge profiles obtained for Zn||OV-ZnV2O4-200 ZIB at 

100 mA g-1 and (b) Comparison of first charge profile at the current density of 100 and 500 

mA g-1. 

 

 

 

 

 

 

 

 

 

 

As shown in the figures, the potential-induced transformation of the cathode began at ~1.32 V 

at the low current density of 100 mA g-1 in contrast to 1.52 V at 500 mA g-1
 (Fig. 3b).  The 

conversion/transformation took a longer time at the lower current density. The cathode delivers 

a maximum capacity of 374.5 mAh g-1 (at 500 mA g-1) after 10 charge-discharge cycles at a 

current density of 500 mA g-1, whereas a maximum capacity of 600.1 mAh g-1 (100 mA g-1) 

after 3 charge-discharge cycles at 100 mA g-1 was achieved. It is worth pointing out here that 

the specific capacity at a particular current density after activation remains the same 

irrespective of the current density (low or high) at which the cathode is activated. 
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Fig. S9 (a) Galvanostatic charge-discharge profile of Zn||OV-ZnV2O4-200 ZIB at different 

current densities. Plot illustrating the cycling stability of OV-ZnV2O4-200 at the current 

densities of (b) 100 mA g-1 and (c) 2000 mA g-1. 
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Fig. S10 Galvanostatic charge-discharge profile (a) and plot illustrating the cycling stability of 

OV-ZnV2O4-0, OV-ZnV2O4-100, and OV-ZnV2O4-200 at 500 mAg-1 (b). (c) Nyquist plots at 

open circuit voltage and a table summarizing the charge transfer resistance.  
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Note S1: Analysis of Galvanostatic Intermittent Titration Technique (GITT) study  
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D is the diffusion coefficient, nm, and Vm are the number of moles of the active material and 

the molar volume, respectively, and S is the contact area between the electrode and electrolyte. 

t is the time duration of the pulse. Es and Et are the quasi-equilibrium and battery voltage 

changes, respectively. 

Fig. S11 GITT profile of a single step during the discharge of Zn||OV-ZnV2O4-200. 
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Fig. S12 Plots illustrating the diffusion coefficient vs ion insertion state for OV-ZnV2O4-0 (a), 

and OV-ZnV2O4-100 (b).  
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Fig. S13 Nyquist plot at OCV (1.1 V) and after different cycles in charge state at 1.8 V (OV-

ZnV2O4-200 cathode). Table summarizing the charge transfer resistance. The equivalent circuit 

is shown in the inset: Rs: solution resistance, Rct: charge transfer resistance, CPE: constant 

phase element, and W: Warburg impedance. 
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Fig. S14 Nyquist plot at OCV (1.1 V) and after different cycles in discharge state at 0.2 V (OV-

ZnV2O4-200 cathode). Table summarising the charge transfer resistance.  
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Fig. S15 The calculated partial density of states (PDOS) of Ov-ZnV2O4. 
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Fig. S16 Zn2+ ion interaction with (a) pristine ZnV2O4, and (b) OV-ZnV2O4, and the calculated 

values of interaction energy. [Color code: grey sphere for Zn, red (big) sphere for V, and red 

(small) sphere for O]. 
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Note S2. Limitations of our calculation: 

Our current level of theory (PBE-GGA) has limitations in accurately describing the electronic 

structure of systems containing transition metals, lanthanides, and actinides. To address these 

limitations, we recommend using advanced approaches incorporating U+V corrections. 

Standard DFT, particularly with local or semi-local exchange-correlation functionals like LDA 

or GGA, often fails to accurately describe systems with strong electron-electron correlations, 

such as transition metal oxides, lanthanides, and actinides. U+V corrections help account for 

these strong correlations by introducing on-site (U) and inter-site (V) Coulomb interactions. 

The Hubbard U term corrects the self-interaction error in DFT, better describing the localized 

d or f electrons in transition metals and rare earth elements. It effectively increases the energy 

gap and corrects the electronic structure by accounting for electron-electron repulsion within 

the same atomic site. The inter-site V term extends the correction to include interactions 

between electrons on different sites, crucial for materials where electron correlation effects 

involve neighboring atoms or ions. 

By including U+V corrections, DFT can more accurately predict electronic properties such as 

band gaps, magnetic moments, and charge transfer insulators, often underestimated by standard 

DFT methods.  
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Fig. S17 Cyclic voltammograms of OV-ZnV2O4-0, OV-ZnV2O4-100, and OV-ZnV2O4-200. 
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Note S3: Determining the capacitive and diffusion-controlled contributions:   

The voltammogram was quantitatively analysed to understand the Zn2+ storage kinetics 

according to the eqn (1).5 

                                                            𝑖 = 𝑎ν𝑏                                         (1)                       

where, ‘a’ and ‘b’ are the adjustable parameters and the value of b ranges from 0.5 to 1.0. The 

b-value is obtained from log(i)˗log () plots and the value of ‘b’ for the four peaks A, B, C and 

D are calculated to be 0.63, 0.69, 0.71 and 0.67, respectively, suggesting a diffusion-dominated 

process. The capacitive contribution is further calculated according to the following eqn (2)

                                                      

                                                                   𝑖 = 𝑘1 + 𝑘2𝜈1/2                            (2)  

where, i refers to current (mA), the k1 and k2 are two potential dependent constant and 𝑣 the 

scan rate mV s-1. The k1 and k2 were calculated by plotting i vs. 𝑣1/2 and 𝑘1𝑣 and 𝑘2𝑣1/2 

correspond to the contribution from the capacitive and diffusion control process, respectively. 

  



 

21 
 

Fig. S18 Cyclic voltammograms at different scan rates (a), plot illustrating b-value and log (i)-

log () plot (b), cyclic voltammogram illustrating the capacitive contribution at the scan rate of 

1 mV s-1 (c), and plot illustrating the capacitive and diffusion-controlled contribution at various 

scan rate (d). 

  

C
u

rr
en

t 
(A

)

0.0 0.3 0.6 0.9 1.2 1.5 1.8
-0.0010

-0.0005

0.0000

0.0005

0.0010

 0.1 mV s
-1

 0.2 mV s
-1

 0.3 mV s
-1

 0.5 mV s
-1

 0.7 mV s
-1

 0.8 mV s
-1

   1 mV s
-1

 

 

Potential (V) vs. (Zn2+/Zn)

Peak a

Peak b

Peak d Peak c

a

peak a peak b peak c peak d
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-1.0 -0.8 -0.6 -0.4 -0.2 0.0
-4.8

-4.4

-4.0

-3.6

-3.2

-2.8

-2.4

-2.0

 

 

 peak a

 peak b

 peak c

 peak d

lo
g 

(p
ea

k
 c

u
rr

en
t,

 A
)

log ( scan rate, mV s-1
)

 

 

b
 V

a
lu

e

b

C
u

rr
en

t 
(A

)

0.0 0.3 0.6 0.9 1.2 1.5 1.8
-0.0010

-0.0005

0.0000

0.0005

0.0010

 

 

 1 mV s-1

50.58%

Capacitive

Potential (V) vs. (Zn2+/Zn)

c

0.2 0.4 0.6 0.8 1.0
0

50

100

5
7

.6
1

5
4

.6
9

4
9

.4
2

5
2

.3
1

4
2
.3

9

4
7
.6

9

5
0
.5

8

4
5
.5

1

6
3

.5
4

3
6
.4

6

3
6
.1

5
6

3
.8

5

7
6

.2
5  

 

C
o
n

tr
ib

u
ti

o
n

(%
)

Scan rate (mV s-1)

 Diffusion-controlled         Capacitive
2
3
.7

5
d



 

22 
 

Fig. S19 Capacitive and diffusion-controlled current contribution at 1 mV s-1 of OV-ZnV2O4-

0, OV-ZnV2O4-100, and OV-ZnV2O4-200.  
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Fig. S20 (a) High-resolution ex-situ XPS V 2p profile of OV-ZnV2O4-200 at different charge 

and discharge states. (b) The bar chart represents the % of different oxidation states of V at 

different states of charge-discharge. 
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Fig. S21 (a) Cyclic voltammograms (first three cycles) of Zn||OV-ZnV2O4-200 at 3 mV s-1, and 

(b) galvanostatic charge-discharge profiles at 500 mA g-1. Electrolyte: Zn (CF3SO3)2 in dry 

acetonitrile. 
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Fig. S22 FESEM (a, d), TEM (b, e), and HRTEM (c, f) images of OV-ZnV2O4-200 cathode 

when charged to 1.8 V (a-c) and discharged to 0.2 V (d-g). STEM elemental mapping (Zn, V, 

O, C, S, and F) of the cathode at the discharge state (0.2 V). The inverse FFT image is shown 

in the inset of (f). 
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Fig. S23 High-resolution XPS C1s profile of OV-ZnV2O4-200 cathode at pristine, fully 

charged, and discharged states. 

  

C-F

1st charge to 1.8 V

 

 

Binding Energy (eV)

In
te

n
si

ty
 (

a
.u

.)

2nd discharge to 0.2 V

Pristine

2nd charge to 1.8 V

C1s

C=O

C-O

C-C/ C=C
 

 

295 290 285

 Raw

 Fitted

 



 

27 
 

Fig. S24 Schematic illustration of the charge-storage with OV-ZnV2O4-200.  
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Fig. S25 Digital photograph of OCV of a single coin cell and ZIB-powered LCD panel of 

digital hygrometer. 
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Table S1. ZIB performance of low valent vanadium-based spinel cathode.  

Sl 

No

. 

Cathode 

Material 

  

Electrolyte 

  

Reaction 

mechanism 

Voltage 

(V) vs. 

Zn2+/Zn 

Specific 

capacity 

  

Energy 

density 

Wh kg-1 

Power 

density 

W kg-1 

Capacity 

retention

/ cycles/ 

current 

density 

Ref  

1 Electroactivation

-induced spinel 

ZnV2O4 

 

2M 

Zn(ClO4)2  

  

  0.2–1.4 312 mAh 

g-1 at 0.5 

C 

    84%/ 

1000/ 10 

C 

6  

2 ZnO/ZnV2O4 

composite 

hollow 

microspheres 

 

  

3 M 

Zn(CF3SO3)2 

  

  0.2–1.8 338 mAh 

g-1 at 100 

mA g-1 

260.8 76.9 79%/ 

2000/ 

4000 mA 

g-1 

7  

3 Porous structure 

ZnV2O4/C-N 

composite 

 

2 M ZnSO4 

  

  0.5–1.8 301 mAh  

g-1 at 300 

mA g-1 

    / 1000/ 

200 mA 

g-1 

8  

4 Act−ZnV2O4 

 

3 M ZnSO4  

  

Insertion/ext

raction of 

Zn2+ 

0.4–1.6 242 mAh  

g-1 at 500 

mA g-1 

    83%/ 

2000/ 

4000 mA 

g-1 

9  

5 Urchin-like 

Spinel MgV2O4 

2M 

Zn((CF₃SO₂)

₂N)2 

  

Insertion/ext

raction of 

Zn2+ 

0.2-1.4 272 mAh  

g-1 at 200 

mA g-1 

171.5 140.6   10  

6 Sea-urchin-like 

oxygen–

deficient 

ZnV2O4 

 

3 M 

Zn(CF3SO3)2 
Co-

insertion/ext

raction of 

Zn2+ and H+ 

0.2-1.8 599.6mA

h g-1 at 

100 mA 

g-1 

371.8 62.1 57.5%/23

00/4000 

this 

work 
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