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Scheme S1. Schematic illustration of the synthesis of Ov-ZnV,0a.
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Fig. S1 High-resolution XPS Zn 2p (a), O 1s (b), and C 1s (c) profiles of Ov-ZnV,04-200.
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Fig. S2 Thermogravimetric (TG) analyses illustrating the decomposition of precursors
(Zn(CH3C00)2-2H20) + NH4VO3) in the absence (a) and presence (b, c) varying amounts of
sucrose and the formation of (a) Ov-ZnV204-0, (b) Ov-ZnV204-100, and (c) Ov-ZnV204-200.
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TG analyses were performed with the mixture of the precursors (Zn(CH3COO),-2H.0) +
NH4VO:s3) in the presence of varying amounts of sucrose (0, 100, and 200 mg). Multi-step
weight loss was observed in all cases. In the absence of sucrose, three distinct weight losses
were observed (Fig. S2a). The second and third weight losses (200-350°C) overlap when
sucrose is present. The initial weight loss in step | (<130°C) is attributed to the loss of H.O
from Zn(CH3COO).-2H20 (Fig. S2a, b and c). Step 1l (>130°C) corresponds to the loss of NH3
and structural H,O due to the decomposition of NH4VOs.? The third weight loss can be
attributed to the evolution of CO2/O- and the final stable weight plateau observed above 450°C
corresponds to the formation of carbon-supported ZnV204 as the final product. In the presence
of sucrose, the well-defined plateau was not observed at the final stage possibly due to the
presence of sucrose-derived carbon. The weight loss above 350°C in the presence of sucrose is
associated with further loss of O>. The quantitative analysis of the weight loss at various steps
confirms that the final product has carbon and Ov-ZnV204. The % carbon content in the
presence of sucrose is quantified to be 19.6% and 34.7% for the sample mixture analyzed in

the presence of 100 and 200 mg of sucrose, respectively.



Fig. S3 EPR spectral profile of Ov-ZnV204-0, Ov-ZnV204-100, and Ov-ZnV204-200 at room
temperature.
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Fig. S4 (a) High-resolution XPS V 2p profile of Ov-ZnV204-0, Ov-ZnV204-100, and Ov-
ZnV>04-200. (b) The bar diagram depicts the % of different oxidation states of V.
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Fig. S5 High-resolution XPS O 1s profile of Ov-ZnV20s:-0 (a), Ov-ZnV204-100 (b), and (c)
Ov-ZnV204-200.
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Fig. S6 FESEM images of Ov-ZnV20:-0 (a), Ov-ZnV20:-100 (b), and (c) Ov-ZnV20:-200.




Fig. S7T HADDF image of Ov-ZnV204-200 and the corresponding STEM elemental mapping
image illustrating the distribution of carbon.




Fig. S8 (a) Galvanostatic charge-discharge profiles obtained for Zn||Ov-ZnV.04-200 ZIB at
100 mA g* and (b) Comparison of first charge profile at the current density of 100 and 500
mA g
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As shown in the figures, the potential-induced transformation of the cathode began at ~1.32 V
at the low current density of 100 mA g? in contrast to 1.52 V at 500 mA g* (Fig. 3b). The
conversion/transformation took a longer time at the lower current density. The cathode delivers
a maximum capacity of 374.5 mAh g* (at 500 mA g) after 10 charge-discharge cycles at a
current density of 500 mA g, whereas a maximum capacity of 600.1 mAh g* (100 mA g?)
after 3 charge-discharge cycles at 100 mA g was achieved. It is worth pointing out here that
the specific capacity at a particular current density after activation remains the same

irrespective of the current density (low or high) at which the cathode is activated.



Fig. S9 (a) Galvanostatic charge-discharge profile of Zn||Ov-ZnV.04-200 ZIB at different
current densities. Plot illustrating the cycling stability of Ov-ZnV204-200 at the current
densities of (b) 100 mA g and (c) 2000 mA g
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Fig. S10 Galvanostatic charge-discharge profile (a) and plot illustrating the cycling stability of
Ov-ZnV;04-0, Ov-ZnV,04-100, and Ov-ZnV204-200 at 500 mAg™? (b). (c) Nyquist plots at
open circuit voltage and a table summarizing the charge transfer resistance.
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Note S1: Analysis of Galvanostatic Intermittent Titration Technique (GITT) study

_ i NV~ 2 % 2 34
D = & (tmlmye 2 )

D is the diffusion coefficient, nm, and Vi are the number of moles of the active material and

the molar volume, respectively, and S is the contact area between the electrode and electrolyte.

t is the time duration of the pulse. AEs and AE; are the quasi-equilibrium and battery voltage
changes, respectively.

Fig. S11 GITT profile of a single step during the discharge of Zn||Ov-ZnV204-200.
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Fig. S12 Plots illustrating the diffusion coefficient vs ion insertion state for Ov-ZnV204-0 (a),

and Ov-ZnV204-100 (b).
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Fig. S13 Nyquist plot at OCV (1.1 V) and after different cycles in charge state at 1.8 V (Ov-
ZnV»04-200 cathode). Table summarizing the charge transfer resistance. The equivalent circuit

is shown in the inset: Rs: solution resistance, Rct: charge transfer resistance, CPE: constant
phase element, and W: Warburg impedance.
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Fig. S14 Nyquist plot at OCV (1.1 V) and after different cycles in discharge state at 0.2 V (Ov-
ZnV>04-200 cathode). Table summarising the charge transfer resistance.
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Fig. S15 The calculated partial density of states (PDOS) of Oy-ZnV0..
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Fig. S16 Zn?* ion interaction with (a) pristine ZnV204, and (b) Ov-ZnV-0s, and the calculated
values of interaction energy. [Color code: grey sphere for Zn, red (big) sphere for V, and red
(small) sphere for O].
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Note S2. Limitations of our calculation:

Our current level of theory (PBE-GGA) has limitations in accurately describing the electronic
structure of systems containing transition metals, lanthanides, and actinides. To address these
limitations, we recommend using advanced approaches incorporating U+V corrections.
Standard DFT, particularly with local or semi-local exchange-correlation functionals like LDA
or GGA, often fails to accurately describe systems with strong electron-electron correlations,
such as transition metal oxides, lanthanides, and actinides. U+V corrections help account for
these strong correlations by introducing on-site (U) and inter-site (V) Coulomb interactions.
The Hubbard U term corrects the self-interaction error in DFT, better describing the localized
d or f electrons in transition metals and rare earth elements. It effectively increases the energy
gap and corrects the electronic structure by accounting for electron-electron repulsion within
the same atomic site. The inter-site VV term extends the correction to include interactions
between electrons on different sites, crucial for materials where electron correlation effects

involve neighboring atoms or ions.

By including U+V corrections, DFT can more accurately predict electronic properties such as
band gaps, magnetic moments, and charge transfer insulators, often underestimated by standard
DFT methods.
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Fig. S17 Cyclic voltammograms of Ov-ZnV204-0, Ov-ZnV204-100, and Ov-ZnV204-200.
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Note S3: Determining the capacitive and diffusion-controlled contributions:
The voltammogram was quantitatively analysed to understand the Zn?" storage Kinetics

according to the eqn (1).°
i =av’ (1)

where, ‘a’ and ‘b’ are the adjustable parameters and the value of b ranges from 0.5 to 1.0. The
b-value is obtained from log(i)-log (v) plots and the value of ‘b’ for the four peaks A, B, C and
D are calculated to be 0.63, 0.69, 0.71 and 0.67, respectively, suggesting a diffusion-dominated

process. The capacitive contribution is further calculated according to the following eqgn (2)

i =ky + kyv'/? (2)

where, i refers to current (mA), the ki and kz are two potential dependent constant and v the
scan rate mV s. The ki and k2 were calculated by plotting i vs. v and kiv and kov'?

correspond to the contribution from the capacitive and diffusion control process, respectively.
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Fig. S18 Cyclic voltammograms at different scan rates (a), plot illustrating b-value and log (i)-

log (v) plot (b), cyclic voltammogram illustrating the capacitive contribution at the scan rate of

1 mV s? (c), and plot illustrating the capacitive and diffusion-controlled contribution at various
scan rate (d).
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Fig. S19 Capacitive and diffusion-controlled current contribution at 1 mV s of Oy-ZnV20s-
0, Ov-ZnV204-100, and Ov-ZnV-204-200.
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Fig. S20 (a) High-resolution ex-situ XPS V 2p profile of Ov-ZnV.04-200 at different charge
and discharge states. (b) The bar chart represents the % of different oxidation states of V at
different states of charge-discharge.
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Fig. S21 (a) Cyclic voltammograms (first three cycles) of Zn||Ov-ZnV204-200 at 3 mV s, and

(b) galvanostatic charge-discharge profiles at 500 mA g. Electrolyte: Zn (CF3SOs)2 in dry
acetonitrile.
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Fig. S22 FESEM (a, d), TEM (b, e), and HRTEM (c, f) images of Ov-ZnV20:-200 cathode
when charged to 1.8 V (a-c) and discharged to 0.2 V (d-g). STEM elemental mapping (Zn, V,
O, C, S, and F) of the cathode at the discharge state (0.2 V). The inverse FFT image is shown
in the inset of (f).
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Fig. S23 High-resolution XPS C1s profile of Ov-ZnV.04-200 cathode at pristine, fully
charged, and discharged states.

Cls —o— Raw

2nd chargeto 1.8 V

Intensity (a.u.)

295 290 285
Binding Energy (eV)

26



Fig. S24 Schematic illustration of the charge-storage with Oy-ZnV>0:-200.
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Fig. S25 Digital photograph of OCV of a single coin cell and ZIB-powered LCD panel of
digital hygrometer.
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Table S1. ZIB performance of low valent vanadium-based spinel cathode.

Sl
No

Cathode
Material

Electroactivation
-induced spinel
ZnV204

Zn0/ZnV204
composite
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microspheres

Porous structure
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oxygen—
deficient
ZnV204

Electrolyte

2M
Zn(ClO4),

3M
Zn(CF3SO3)z

2 M ZnSOq4

3 M ZnSO4

2M
Zn ((CFsSOz)
N),

3M
Zn(CF3803)2

Reaction
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Insertion/ext
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0.2-1.8

Specific

Wh kg

312 mAh
gtat0.5
C
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gtat 100
mA g
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301 mAh

gtat 300
mA g*!
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hgtat
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g-l

Energy
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Power
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W kgt
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