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1. Machine Learning
1.1 Center-Environment (CE) feature
  By conducting a comparative analysis between our developed Center-Environment (CE) feature 
construction method and several popular feature construction techniques currently employed in the 
field, we have demonstrated the unique aspects and advantages of the CE method in encoding the 
complex interplay of chemical and structural properties in materials science. This comparison not 
only highlights the innovative approach of CE in capturing intricate material characteristics but also 
underscores its efficacy in enhancing the predictive accuracy of machine learning models in 
materials science.
  The CE method innovatively integrates the essential properties of chemical elements and pure 
substances, along with the compositional and structural nuances of crystal structures. For each 
element within the compound, we have meticulously selected a set of 56 fundamental properties, 
such as ion radius, atomic number, and electronegativity (detailed in Supplementary Table 1). These 
properties form the foundation of our machine learning training dataset, constructed using the CE 
feature model. Chemical descriptors, particularly that encapsulating crystal geometry information, 
play a pivotal role in augmenting the predictive accuracy of our machine learning model. The 
essence of the CE model lies in its approach to defining a central atom and its environmental atoms 
within a given structure. The model calculates the linearly weighted sum of the elementary feature 
properties of these environmental atoms, effectively capturing and encoding the chemical 
composition and structural information into the input feature vectors for machine learning. The 
weighting is generally inversely proportional to the distance between each environmental atom and 
the central atom. The detailed formulation and construction of the CE features are presented in 
equations (1)-(5).
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where D represents a high-dimensional vector that characterizes the training/testing dataset. Within 

this dataset, (i = 1-56) denotes one of the 56 elementary properties of elements or pure substances. iF

Each is structured as a two-dimensional vector, representing the property components of the iF

central atom and the environmental atom , respectively. The target properties, denoted by C,if ,E if

, are the focus of our predictive analysis. Here, represents the property  of the central atom, T ,C ip i
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while signifies the property of the environmental atom . The weight of each environmental ,j ip i j

atom, , is determined by the reciprocal of , the distance from the central atom to the j jr

environmental atom , where indexes the environmental atoms (j = 1- ).j j jN

  During the construction of CE features, atoms within a crystal structure are categorized into two 
distinct sets: central atoms and their surrounding environmental atoms. In spinel structures, A and 
B cation inequivalent sites are identified as the central atoms. The environmental atoms encompass 
those from the first nearest neighbors up to the nth nearest neighbors of the central atom. For this 
study, we limited our focus to the first nearest neighbors, a choice proven robust for predicting target 
properties in these systems. The space group symmetry dictates that A and B cations in spinel oxide 
structures occupy inequivalent sites. Consequently, we considered two types of central atoms and 
their corresponding environmental atoms (oxygen atoms in this study) in the CE feature construction 
process, namely dual center CE features.
  To mitigate the impact of highly correlated features on the training of machine learning models, 

we computed the Pearson correlation coefficients among the features. Subsequently, we eliminated 

features from pairs with strong correlations, specifically those with a lower average importance 

ranking. This approach ensures that our model is trained on features that offer unique and non-

redundant information, thereby improving the predictive performance and interpretability of the 

model. The Pearson correlation coefficient is defined as:

\* MERGEFORMAT 1
,

2 2

1 1

( )( )
cov( , )

( ) ( )

n

i i
i

X Y n n
X Y

i i
i i

x x y y
X Y

x x y y


 


 

 
 

 



 
(6)

The Pearson correlation coefficient is a statistical metric that measures the degree of linear ,X Y

association between two variables, X and Y. It is computed as the covariance of X and Y, denoted by

, divided by the product of their respective standard deviations, and . The formula ( , )cov X Y X Y

expresses this coefficient as the sum of the product of deviations of each observed value from their 

respective sample means ( and ) over all n samples, normalized by the product of the sums of X Y

the squares of these deviations for X and Y. In essence, provides a measure of how much Y ,X Y

changes with X on a standardized scale from -1 to 1, where -1 represents a perfect negative linear 
relationship, 0 indicates no linear relationship, and 1 signifies a perfect positive linear relationship.

1.2 Feature engineering
  To accurately predict the MAX(DT, DO) values in spinel structures, we considered four different 
types of features as inputs for the machine learning model: a feature set {E} based on elemental 
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fractions (the ElemNet model), a Magpie feature set {M} considering only composition information, 
a Voronoi tessellations feature set {V} accounting for both composition and structural information, 
and a feature set {CE} we proposed that simultaneously includes both compositional and structural 
information. The feature set {E} based on elemental fractions includes the elemental fractions and 
stoichiometric ratios of each component in the crystal structure. The Magpie feature set {M} 
consists of 87 elemental descriptors such as atomic number, atomic radius, and electronegativity. 
The Voronoi tessellations feature set {V} describes the local environment around each atom, 
represented using Voronoi polyhedra, and includes the volume, surface area, and number of faces 
for each polyhedron. Lastly, our proposed feature set {CE} encodes both compositional and 
structural information into the machine learning input features by defining a set of central atoms 
and surrounding atoms in the crystal structure, as well as the weights for each surrounding atom. 
By comparing the performance of different types of features, we can evaluate their effectiveness in 
predicting the properties of spinel structures. Furthermore, our proposed compositional and 
structural feature set {CE} is expected to provide additional information about the crystal structure, 
thereby improving the accuracy of the machine learning model.
  Given that each feature set contains a large number of features ({E}, {M}, {V}, and {CE} feature 
sets contain 71, 96, 271, and 224 features respectively), selecting the most representative features 
is crucial for optimizing the predictive performance of the machine learning model and avoiding 
overfitting. To this end, several types of ML algorithms were employed to calculate the importance 
scores for all features to perform average feature ranking. These ML algorithms include Ridge 
Regression, Least Absolute Shrinkage and Selection Operator (LASSO), Random Forests (RF), 
Recursive Feature Elimination (RFE), Support Vector Regression (SVR), and Extreme Gradient 
Boosting (XGBoost). This approach better samples the important features, as each type of ML 
algorithm calculates the correlation between each feature and the target variable in a unique way. 
Each algorithm can provide different rankings for all features, and the features with the highest 
average ranking should be selected. The Python library Pycaret1 was used to train each feature set 
and the best features were selected based on the learning curve. To avoid linear correlation between 
features, Pearson correlation coefficients between all feature pairs were also calculated. From 
feature pairs with a Pearson correlation coefficient > 0.90, the feature with the higher average 
ranking was selected.
  After a series of meticulous feature selection and optimization, we identified key features suitable 
for subsequent machine learning research. Additionally, using the same optimization methods, we 
selected 18 features from the {M} feature set (out of a total of 28), and 45 features from the {V} 
feature set (out of a total of 55). Notably, because the feature set {E} includes complete information 
on the elemental composition for each structure, the absence of any feature will affect the accurate 
representation of the corresponding elemental composition by the model. Hence, we chose to retain 
all 71 features in the {E} feature set, as detailed in Supplementary Table 3, Supplementary Table 4, 
and Supplementary Table 5 in Supporting Information.

2. DFT calculations
2.1 High-throughput electronic structure calculation
  We employed Density Functional Theory (DFT) and used the Vienna ab initio Simulation Package 
(VASP)2 version 5.4.4 for calculations. To ensure the accuracy and rigor of the calculations, we 
used the Projector Augmented Wave (PAW) basis set, set the cut-off energy to 520 eV, and 
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employed the Perdew-Burke-Ernzerhof (PBE)3 Generalized Gradient Approximation (GGA) 
exchange-correlation functional. The rotationally invariant GGA + U approach was applied using 
the U-J value of 4.0 eV on the Mo4 4d orbitals and 6 eV to the Ag5 4d orbitals. A k-point convergence 
test was carried out to determine the appropriate integration scheme in the Brillouin zone, finally 
selecting a 7 × 7 × 7 k-point grid. All geometric structures were fully relaxed under the guidance of 
the conjugate gradient method until the total energy change between two self-consistent calculations 
was less than 10-5 eV. Additionally, spin polarization was considered in all calculations.
  The energy of the metal d-band or the oxygen 2p-band center is determined by the following 

equation:
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where is the energy center of the metal d band or the oxygen 2p-band. and E are the density  ( )E

of the state and the energy value, respectively.

2.2 OER mechanism
  For OER intermediate (such as OH*, O*, and OOH*) adsorption studies, the low-index (111) 
surface was used to model the intermediate adsorption on the MoAg2O4 and MONa2O4 surfaces. 
The employed slab model was designed with multiple atomic layers, incorporating a sufficient 
number of atoms to ensure a representative surface structure. During structural optimization, a 
segment of the slab closer to the surface was allowed to relax to capture the dynamic nature of 
adsorption, while the remaining part was kept fixed to maintain structural integrity and emulate the 
bulk properties. A 12 Å vacuum space was added to two continuous slabs to eliminate the possible 
interactions from adjacent periodic images. In the condition of alkaline OER, the well-accepted 
process involves three adsorbed intermediates (*OH, *O, and *OOH) and four steps as follows6:

\* MERGEFORMAT (8)*OH * OH e   

\* MERGEFORMAT (9)* *
2OH OH O + H O(l) e   

\* MERGEFORMAT (10)* *O OH OOH + e  

\* MERGEFORMAT (11)*
2 2OOH OH O + * + H O(l) e   

where * stands for the active sites in catalysts.
  The free energy values of OER elementary steps were calculated by the equation:

\* MERGEFORMAT (12)G ads ZPE adsE E T S      

where is the adsorption energy, is the zero-point energy difference between adsorbed adsE ZPEE

and gaseous species, and is the corresponding entropy difference between these two states adsT S

(T was set to be 298.15 K).
  The free energy values of OER intermediates (*OH, *O, and *OOH) were calculated as follows:

\* MERGEFORMAT (13) 2 2(* ) * * 1/ 2OH OH H O HG G G G G    
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\* MERGEFORMAT (14) 2 2(* ) * *O O H O HG G G G G    

\* MERGEFORMAT  2 2(* ) * * 2 3 / 2OOH OOH H O HG G G G G    

(15)

where, , and were Gibbs free energies of adsorption of OH, O, and OOH species, *OHG *OG *OOHG

respectively. The represented the Gibbs free energy of clean catalytic surface. In addition, and
2H OG

were calculated Gibbs free energies of H2O and H2 molecules in gas phase.
2HG

  For the OER process calculation, a standard four-electron reaction mechanism in alkaline 
condition was considered for the calculation of Gibbs free energy change for steps 8-11 according 
to the previous study6:

\* MERGEFORMAT (16)1 *OH He (pH)G G U G      

\* MERGEFORMAT (17)2 *O *OH He (pH)G G G U G       

\* MERGEFORMAT (18)3 *OOH *O He (pH)G G G U G       

\* MERGEFORMAT 4 *OOH H4.92[eV] e (pH)G G U G      

(19)
where U is the potential measured against normal hydrogen electrode (NHE) at standard conditions 
(T = 298.15 K, P = 1 bar). 
  The theoretical overpotential is then readily defined as:

\* MERGEFORMAT (20) 1 2 3 4max , , , / 1.23G G G G e      

  The free energy change of the protons relative to the above specified electrode at non-zero pH is 
represented by Nernst equation as:

\* MERGEFORMAT (21)(pH) ln(10) pHH BG k T   

3. Experimental section
3.1 Chemical reagents
  Ethanol (AR grade) was obtained from Sinopharm Chemical Reagent Co., Ltd. 
Bis(acetylacetonato)dioxomolybdenum(VI) (C10H14MoO6, 97%), sodium nitrate (NaNO3, AR, 
≥99%), citric acid (C6H8O7·H2O, 99.995%), sodium molybdate dihy drate (Na2MoO4·2H2O, AR, 
99%), silver nitrate (AgNO3, AR, 99%), Zinc nitrate (Zn(NO3)2·6H2O, AR, 99%), and Aluminum 
nitrate (Al(NO3)3·9H2O, AR, 99%) were acquired from Aladdin Industry Corporation. All of the 
chemicals were used without further purification. Deionized (DI)-water (with a specific resistance 
of 18.2 MΩ cm) was obtained from Millipore water purification system and was used during the 
whole experiments.
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3.2 Sample preparation
  For the synthesis of MoNa2O4 via the sol-gel method, a typical procedure was employed. Initially, 
6 mmol of molybdenum acetylacetonate (Mo(acac)3) and 12 mmol of sodium nitrate (NaNO3) were 
homogeneously dissolved in a dilute nitric acid solution composed of 30 mL of ultrapure water and 
5 mL of nitric acid under rigorous stirring conditions. Subsequently, 15 mmol of citric acid was 
added to serve as a chelating agent to enhance the uniformity and stability of the metal ions within 
the mixture. The blend was then subjected to constant stirring in an oil bath maintained between 80-
100 °C to induce the formation of a highly viscous gel. This gel was transferred to a preheated oven 
set at 170 °C for a drying period of 12 hours. Finally, the dried gel was calcined in a muffle furnace 
at 300 °C with a carefully controlled heating rate of 5 °C/min for 3 hours, yielding high-purity 
MoNa2O4 powder.
  For the hydrothermal synthesis of MoAg2O4, an initial solution (solution A) was prepared by 

dissolving 0.6440 g of Na2MoO4·2H2O in 40 mL of deionized water. Concurrently, another solution 

(solution B) was prepared by dissolving 0.9043 g of silver nitrate (AgNO3) in 40 mL of deionized 

water. Solution A was gradually titrated into Solution B under intense stirring, resulting in a stable 

colloidal suspension. This suspension was then transferred into a 100 mL stainless steel autoclave 

and subjected to a hydrothermal treatment at 120 °C for 2 hours. Upon completion, the solid product 

was isolated by centrifugation, thoroughly washed with deionized water and anhydrous ethanol, and 

subsequently dried overnight at 60 °C to obtain high-purity MoAg2O4 powder.

  The ZnAl2O4 catalyst was synthesized using an isopropanol-mediated controlled hydrolysis 

method. Typically, 2.975 g of Zn(NO3)2·6H2O and 7.5 g of Al(NO3)3·9H2O were dissolved in 50 

mL of isopropanol, with the Zn2+/Al3+ ratio set to a stoichiometric value of 1:2 for ZnAl2O4. The 

solution was transferred to a 100 mL high-pressure vessel, stirred at ambient temperature for 2 

hours, then heated in an oven to 200 °C and allowed to react for 10 hours. Subsequently, the resulting 

precipitate was collected by centrifugation, washed several times with ethanol and ultrapure water, 

dried at 90 °C for 5 hours, and finally calcined at 600 °C for 5 hours to obtain the ZnAl2O4 catalyst.

3.3 Characterization
  Field emission scanning electron microscope (FE-SEM, Zeiss Sigma 500) and transmission 
electron microscopy (TEM, JEM-2100F, 200 kV) were employed to obtain the morphologies and 
elemental mapping images, respectively. The crystal structures were characterized by an X-ray 
diffraction (XRD, Bruker-D2 PHASE X-ray diffraction system, Cu kα radiation, λ=1.5418 Å). 
Fourier transform infrared spectra (FTIR) were recorded on a FTIR spectrometer (Nicolet iS 50, 
Thermo Scientific). UV-vis absorption spectra were collected on PerkinElmer Lambda 750 
spectrophotometer. Raman was carried out by a Nanofinder 30A Raman spectrometer with a 532 
nm laser source (Tokyo Instruments, Inc). X-ray photoelectron spectra (XPS) were recorded on an 
ESCALAB 250xi X-ray photoelectron spectrometer (Thermo Scientific) to investigate the surface 
chemical environment of samples.

3.4 Electrochemical measurements
  The electrocatalytic performances of electrocatalysts were tested on a typical three-electrode 
system using an Autolab electrochemical workstation. A graphite rod and Hg/HgO (1 M KOH) 
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electrode were used as the counter electrode and reference electrode. In order to prepare the working 
electrode (WE), 4 mg of the synthesized electrocatalyst powder was dispersed in 500 μL of a mixed 
solution consisting of ultrapure water, isopropanol, and 5 wt% Nafion with volumes of 380 μL, 100 
μL, and 20 μL, respectively. After sonification for 60 min, 80 μL of the resulting suspension was 
drop-cast onto a pre-cleaned nickel foam electrode (NF) with a surface area of 1 cm2, achieving a 
mass loading of 0.64 mg cm-2. Then, the WE could be further used after drying at room temperature. 
Prior all the electrochemical measurements, cyclic voltammetry (CV) method was carried out to 
activate the electrocatalysts at 50 mV/s. Linear sweep voltammetry (LSV) was performed to record 
the OER polarization curves with 95% iR-correction at a scan rate of 5 mV s-1 in O2-saturated 1 M 
KOH electrolyte. The electrochemical impedance spectroscopy (EIS) was measured from 105 to 
10-1 Hz with the amplitude of 0.005 V. Additionally, the stability tests were carried out by 
chronoamperometry (CP) method at a constant current density of 10 mA cm-2. All the measured 
potential versus Hg/HgO were normalized to RHE by the following equation:

\* MERGEFORMAT (22)/ 0.059 0.098RHE Hg HgOE E pH   



9

Supplementary Table 1. Atomic and structural properties of elements and pure substances as elementary 
properties.7 

Index Symbol Feature name Feature type

1 𝑓0.5 Atomic electron scattering factor at 0.5 Elemental

2 𝑁𝐴𝐸 Atomic environment number (Villars, Daams) Elemental

3 𝑍𝑙𝑡 ‒ 𝑙𝑟 Atomic number start counting left top, left-right sequence Elemental

4 𝐴𝑟 Atomic weight Elemental

5 𝑇𝑏 Boiling temperature Elementary substance

6 𝑍 𝐶
𝑒𝑓𝑓 Charge nuclear effective (Clementi) Elemental

7 Κ Compression modulus Elementary substance

8 𝜌 Density Elementary substance

9 𝑑𝑐 Distance from core electron (Schubert) Elemental

10 𝑑𝑣 Distance from valence electron (Schubert) Elemental

11 𝑍𝑐ℎ𝑒𝑚𝑒𝑞 Electrochemical weight equivalent Elemental

12 𝐸𝑒𝑎 Electron affinity Elemental

13 𝜒𝐴𝑅 Electronegativity (Alfred-Rochow) Elemental

14 𝜒𝑀𝐵 Electronegativity (Martynov&Batsanov) Elemental

15 𝜒𝑃 Electronegativity (Pauling) Elemental

16 𝜒𝑎 Electronegativity absolute Elemental

17 𝐸𝑐 Energy cohesive (Brewer) Elemental

18 𝑍1𝑠𝑡𝑖 Energy of ionization first Elemental

19 𝑍2𝑛𝑑𝑖 Energy of ionization second Elemental

20 𝑍3𝑟𝑑𝑖 Energy of ionization third Elemental

21 Δ𝐻𝑎𝑡 Enthalpy of atomization Elemental

22 Δ𝐻𝑚 Enthalpy of melting Elementary substance

23 Δ𝐻𝑣 Enthalpy of vaporization Elementary substance

24 𝑆𝑠 Entropy of solid Elementary substance

25 𝑁𝐺 Group number Elemental

26 𝜈 Magnetic frequency of nuclei Elemental

27 𝜇 Magnetic resonance Elemental

28 𝜇𝑀𝑜𝐾𝛼 Mass attenuation coefficient for MoKα Elemental

29 𝑇𝑚 Melting temperature Elementary substance

30 𝑀𝑐ℎ𝑒𝑚 Mendeleev chemists sequence Elemental

31 𝑀𝑑𝑡𝐿 Mendeleev d-t start left Elemental

32 𝑀𝑑𝑡𝑅 Mendeleev d-t start right Elemental

33 𝑀𝐻𝑑𝑡𝐿 Mendeleev H d-t start left Elemental

34 𝑀𝐻𝑑𝑡𝑅 Mendeleev H d-t start right Elemental

35 𝑀𝐻𝑡𝑑𝐿 Mendeleev H t-d start left Elemental

36 𝑀𝐻𝑡𝑑𝑅 Mendeleev H t-d start right Elemental

37 𝑀𝑃𝑒𝑡𝑡 Mendeleev Pettifor Elemental

38 𝑀𝑃𝑒𝑡𝑡𝑅 Mendeleev Pettifor regular Elemental

39 𝑀𝑡𝑑𝐿 Mendeleev t-d start left Elemental

40 𝑀𝑡𝑑𝑅 Mendeleev t-d start right Elemental

41 𝐶𝑚 Molar heat capacity Elementary substance
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Supplementary Table 1 (continued)

Index Symbol Feature name Feature type

42 𝜇𝑛 Moment nuclear magnetic Elemental

43 𝑍 𝑆
𝑒𝑓𝑓 Nuclear charge effective (Slater) Elemental

44 𝑂𝑆1 Oxidation state first Elemental

45

𝑁𝑏𝑟 ‒ 𝑟𝑙 Periodic number start counting bottom right, right-left 

sequence

Elemental

46

𝑁𝑙𝑏 ‒ 𝑙𝑟 Periodic number start counting left bottom, left-right 

sequence

Elemental

47 𝑁𝑡𝑟 ‒ 𝑟𝑙 Periodic number start counting top right, right-left sequence Elemental

48 𝑁𝑞 Quantum number Elemental

49 𝑅𝑐 Radii covalent Elemental

50 𝑅𝑚 Radii metal (Waber) Elemental

51 𝑅𝑝𝑠 Radii pseudo-potential (Zunger) Elemental

52 𝐿 Spectral lines no Elemental

53 𝐼 Spin nuclei Elemental

54 𝜎𝑡ℎ Thermal neutron capture cross section Elemental

55 𝑛𝑣𝑎𝑙 Valence electron number Elemental

56 𝑉𝑎𝑡𝑜𝑚 Volume of atom (Villars, Daams) Elemental
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Supplementary Table 2: List of all Center-Environment {CE} features selected from mean feature 
ranking utilized in the present study

Symbol Feature name Atomic environment type Feature type
𝑛𝑣𝑎𝑙  Valence electron number                                 OC Elemental& Structural
𝑛𝑣𝑎𝑙  Valence electron number                                     TC Elemental& Structural

𝜌  Compression modulus                                         TC Elemental& Structural
𝑅𝑝𝑠  Radii pseudo-potential OC Elemental& Structural
𝑀𝑝𝑒𝑡𝑡  Mendeleev Pettifor                                          OC Elemental& Structural
𝑀𝐻𝑑𝑡𝐿  Mendeleev H d-t start left                                  OC Elemental& Structural

𝜈  Magnetic frequency of nuclei                                OC Elemental& Structural
𝐾  Compression modulus                                         TC Elemental& Structural
𝐾  Compression modulus                                         OC Elemental& Structural

Δ𝐻𝑎𝑡  Enthalpy of atomization                                     TC Elemental& Structural

𝐸3𝑟𝑑𝑖  Energy of ionization third                                  OC Elemental& Structural

𝑇𝑏  Boiling temperature                                         OC Elemental& Structural
𝑀𝑙𝑡 ‒ 𝑙𝑟  Atomic number start counting left 

top, left-right sequence  
OC Elemental& Structural

𝑅𝑚  Radii metal TC Elemental& Structural
𝑀𝑝𝑒𝑡𝑡  Mendeleev Pettifor                                          TC Elemental& Structural

𝜈  Magnetic frequency of nuclei                                TC Elemental& Structural
𝑉𝑎𝑡𝑜𝑚  Volume of atom TC Elemental& Structural
𝜒𝑃  Electronegativity TC Elemental& Structural
𝑅𝑝𝑠  Radii pseudo-potential TC Elemental& Structural
𝑀𝑡𝑑𝐿  Mendeleev t-d start right                                   TC Elemental& Structural
Δ𝐻𝑚  Enthalpy of melting                                         TC Elemental& Structural

𝑍 𝑆
𝑒𝑓𝑓  Nuclear charge effective TC Elemental& Structural

𝑑𝑣  Distance from core electron TC Elemental& Structural

𝜌  Compression modulus                                         OC Elemental& Structural
𝜇𝑛  Moment nuclear magnetic                                     OC Elemental& Structural

𝑁𝑙𝑏 ‒ 𝑙𝑟  Periodic number start counting 
bottom right, right-left sequence

TC Elemental& Structural

𝐸1𝑠𝑡𝑖  Energy of ionization first                                  OC Elemental& Structural

𝜒𝑀𝐵  Electronegativity OC Elemental& Structural
𝑁𝐴𝐸  Atomic environment number TC Elemental& Structural
𝜒𝑎  Electronegativity absolute                                  TC Elemental& Structural
𝐸𝑒𝑎  Electron affinity                                           TC Elemental& Structural

𝑀𝑐ℎ𝑒𝑚  Mendeleev chemists sequence                                 OC Elemental& Structural

𝐸2𝑛𝑑𝑖  Energy of ionization second                                 TC Elemental& Structural

𝑇𝑚  Melting temperature                                         OC Elemental& Structural
𝑉𝑎𝑡𝑜𝑚  Volume of atom OC Elemental& Structural
Δ𝐻𝑚  Enthalpy of melting                                         OC Elemental& Structural
𝑆𝑠  Entropy of solid                                            OC Elemental& Structural

𝐸3𝑟𝑑𝑖  Energy of ionization third                                  TC Elemental& Structural

𝐿  Spectral lines no                                           OC Elemental& Structural
𝐿  Spectral lines no                                           TC Elemental& Structural
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*TC and OC respectively represent the feature of the central atoms at tetrahedral and octahedral sites.

Supplementary Figure 1. (a) Learning curve for feature selection from {CE} feature Set, (b) Contour 
plot of best three hyperparameters utilized in the ML(ET) model using the selected {CE} features 
for MAX(DT, DO) regression, (c) Hyperparameter importance plot for ML(Extra Trees Regressor) 
model, (d) Slice plots for bootstrap, max_depth, max_features, min_samples_leaf, 
min_samples_split, and n_estimators hyperparameters for the ML(Extra Trees Regressor) model. 
The legend bar shows number of trials.
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Supplementary Table 3: List of all Magpie {M} features selected from mean feature ranking utilized 
in the present study

Symbol Feature name Feature type
min 𝜈𝑢𝑛𝑓𝑖𝑙𝑙𝑒𝑑 MagpieData minimum NUnfilled Elemental
min 𝜈𝑠 MagpieData minimum NsValence Elemental
max 𝜈𝑑 MagpieData maximum NdValence Elemental
𝑊̅𝑎𝑡𝑜𝑚𝑖𝑐 MagpieData mean AtomicWeight Elemental
𝑅̅𝑐𝑜𝑣𝑎𝑙𝑒𝑛𝑡 MagpieData mean CovalentRadius Elemental
𝛿𝑐𝑜𝑙𝑢𝑚𝑛 MagpieData avg_dev Column Elemental
𝑅𝑣𝑎𝑙𝑒𝑛𝑐𝑒 MagpieData range NValence Elemental
𝑛̅𝑑,𝑢𝑛𝑓𝑖𝑙𝑙𝑒𝑑 MagpieData mean NdUnfilled Elemental
𝑛̅𝑣𝑎𝑙𝑒𝑛𝑐𝑒 MagpieData mean NValence Elemental
𝑛̅𝑢𝑛𝑓𝑖𝑙𝑙𝑒𝑑 MagpieData mean NUnfilled Elemental
𝛿𝑉𝐺𝑆 MagpieData avg_dev GSvolume_pa Elemental
𝛿𝑆𝑔𝑟𝑜𝑢𝑝 MagpieData avg_dev SpaceGroupNumber Elemental
𝛿𝑇𝑚𝑒𝑙𝑡 MagpieData avg_dev MeltingT Elemental
𝑛̅𝑑 MagpieData mean NdValence Elemental
min 𝐶𝑐𝑜𝑙𝑢𝑚𝑛 MagpieData minimum Column Elemental
𝑅𝑝,𝑢𝑛𝑓𝑖𝑙𝑙𝑒𝑑 MagpieData range NpUnfilled Elemental
min𝑀𝑀𝑒𝑛𝑑𝑒𝑙𝑒𝑒𝑣 MagpieData minimum MendeleevNumber Elemental
𝑛̅𝑝,𝑢𝑛𝑓𝑖𝑙𝑙𝑒𝑑 MagpieData mean NpUnfilled Elemental
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Supplementary Figure 2. (a) Learning curve for feature selection from Magpie {M}feature Set, (b) 
Mean score of best features selected from the {M} feature set (highly correlated features removed) 
for MAX(DT, DO). (c) Pearson correlation between the best {M} features (after removing highly 
correlated features) selected from feature ranking. (d) Test MAE and R2 for MAX(DT, DO) 
regression corresponding to all ML algorithms using {M} feature set.
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Supplementary Figure 3. (a) Contour plot of best three hyperparameters utilized in the ML(ET) 
model using the selected {M} features for MAX(DT, DO) regression. (b) Hyperparameter 
importance plot for ML(Extra Trees Regressor) model, (c) Slice plots for bootstrap, max_depth, 
max_features, min_samples_leaf, min_samples_split, and n_estimators hyperparameters for the 
ML(Extra Trees Regressor) model. The legend bar shows number of trials.



16

    
Supplementary Figure 4. (a) Global SHAP feature importance plot and (b) Simplified version of 
the SHAP feature importance summary plot for MAX(DT, DO) ({M}, ET model), arranged in the 
order of their decreasing importance.
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Supplementary Table 4: List of all Voronoi{V} features selected from mean feature ranking utilized 
in the present study

Symbol Feature name Feature type

𝜈̅𝑁𝑝𝑉,𝑠1 mean_NeighDiff_shell1_NpValence Elemental& Structural
max (𝜔𝑠1) max_NeighDiff_shell1_AtomicWeight Elemental& Structural
min (𝑐𝑠1) min_NeighDiff_shell1_Column Elemental& Structural

min (𝑚) min_MendeleevNumber Elemental& Structural

min (𝑢) min_NUnfilled Elemental& Structural
max (𝑐𝑠1) max_NeighDiff_shell1_Column Elemental& Structural

𝑣̅ mean_NValance Elemental& Structural
𝜎2(𝑐𝑠1) var_NeighDiff_shell1_Column Elemental& Structural
𝑟̅𝑠1 mean_NeighDiff_shell1_Row Elemental& Structural

Δ𝑣 maxdiff_NValance Elemental& Structural

𝛿𝑣 dev_NValance Elemental& Structural
𝑐̅𝑠1 mean_NeighDiff_shell1_Column Elemental& Structural
min (𝜑𝑠1) min_NeighDiff_shell1_GSvolume_pa Elemental& Structural
𝑇̅𝑚 mean_MeltingT Elemental& Structural
𝑅̅𝑐 mean_CovalentRadius Elemental& Structural
max (𝜈𝑁𝑑𝑉,𝑠1) max_NeighDiff_shell1_NdValence Elemental& Structural
𝜎2(𝑅𝑐,𝑠1) var_NeighDiff_shell1_CovalentRadius Elemental& Structural
max (𝜑𝑠1) max_NeighDiff_shell1_GSvolume_pa Elemental& Structural

𝛿𝑔 dev_SpaceGroupNumber Elemental& Structural
𝑅(𝑣𝑠1) range_NeighDiff_shell1_NValance Elemental& Structural
𝑅(𝜈𝑁𝑑𝑉,𝑠1) range_NeighDiff_shell1_NdValence Elemental& Structural
𝜎2(𝑇𝑚,𝑠1) var_NeighDiff_shell1_MeltingT Elemental& Structural
min (𝑛𝑠1) min_NeighDiff_shell1_Number Elemental& Structural
𝑢̅𝑁𝑑,𝑠1 mean_NeighDiff_shell1_NdUnfilled Elemental& Structural

𝑢̅ mean_NUnfilled Elemental& Structural
max (𝑔𝑠1) max_NeighDiff_shell1_SpaceGroupNumber Elemental& Structural
𝜈̅𝑁𝑑𝑉,𝑠1 mean_NeighDiff_shell1_NdValence Elemental& Structural
𝑅(𝜔𝑠1) range_NeighDiff_shell1_AtomicWeight Elemental& Structural
min (𝑇𝑚,𝑠1) min_NeighDiff_shell1_MeltingT Elemental& Structural
min (𝑣𝑠1) min_NeighDiff_shell1_NValance Elemental& Structural
min (𝜈𝑠) min_NsValence Elemental& Structural

Δ𝑢 maxdiff_NUnfilled Elemental& Structural
𝑅(𝑔𝑠1) range_NeighDiff_shell1_SpaceGroupNumber Elemental& Structural
𝜎2(𝑔𝑠1) var_NeighDiff_shell1_SpaceGroupNumber Elemental& Structural
max (𝑇𝑚,𝑠1) max_NeighDiff_shell1_MeltingT Elemental& Structural
min (𝜈𝑁𝑑𝑉,𝑠1) min_NeighDiff_shell1_NdValence Elemental& Structural
𝜎2(𝑢𝑁𝑑,𝑠1) var_NeighDiff_shell1_NdUnfilled Elemental& Structural

min (𝑒) min_EffectiveCoordination Elemental& Structural
𝑅(𝑚𝑠1) range_NeighDiff_shell1_MendeleevNumber Elemental& Structural
𝑅(𝑅𝑐,𝑠1) range_NeighDiff_shell1_CovalentRadius Elemental& Structural
min (𝑢𝑠1) min_NeighDiff_shell1_NUnfilled Elemental& Structural
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Supplementary Table 4 (continued)
𝑅(𝑟𝑠1) range_NeighDiff_shell1_Row Elemental& Structural
𝑅(𝑐𝑠1) range_NeighDiff_shell1_Column Elemental& Structural
𝜎2(𝑚𝑠1) var_NeighDiff_shell1_MendeleevNumber Elemental& Structural

𝛿𝑓 dev_NfUnfilled Elemental& Structural

 
Supplementary Figure 5. (a) Learning curve for feature selection from Voronoi{V} feature Set, (b) 
Test MAE and R2 for MAX(DT, DO) regression corresponding to all ML algorithms using {M} 
feature set. (c) Mean score of best features selected from the {M} feature set (highly correlated 
features removed) for MAX(DT, DO). (d) Pearson correlation between the best {M} features (after 
removing highly correlated features) selected from feature ranking.
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Supplementary Figure 6. (a) Global SHAP feature importance plot and (b) Simplified version of 
the SHAP feature importance summary plot for MAX(DT, DO) ({V}, ET model), arranged in the 
order of their decreasing importance.
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Supplementary Figure 7. (a) Contour plot of best three hyperparameters utilized in the ML(ET) 
model using the selected {V} features for MAX(DT, DO) regression. (b) Hyperparameter 
importance plot for ML(Extra Trees Regressor) model, (c) Slice plots for bootstrap, max_depth, 
max_features, min_samples_leaf, min_samples_split, and n_estimators hyperparameters for the 
ML(Extra Trees Regressor) model. The legend bar shows number of trials.
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Supplementary Table 5: List of all ElemNet {E} features selected from mean feature ranking 
utilized in the present study

Feature name Feature type Feature name Feature type

Zn Elemental Re Elemental

Cd Elemental Th Elemental

Tl Elemental Pu Elemental

Hg Elemental Sb Elemental

U Elemental Zr Elemental

Be Elemental Eu Elemental

Mg Elemental Os Elemental

Sr Elemental Ag Elemental

Cr Elemental Pb Elemental

Ca Elemental La Elemental

Ni Elemental Sn Elemental

Mo Elemental Rh Elemental

Ba Elemental Rb Elemental

W Elemental Pd Elemental

Mn Elemental Ga Elemental

Yb Elemental Au Elemental

Fe Elemental In Elemental

Pa Elemental Ir Elemental

Si Elemental Bi Elemental

Ta Elemental Pt Elemental

Ru Elemental Nd Elemental

Al Elemental Cs Elemental

Li Elemental Pr Elemental

Ce Elemental Sc Elemental

Tc Elemental Ac Elemental

Np Elemental Pm Elemental

Ti Elemental Sm Elemental

Co Elemental Gd Elemental

Cu Elemental Y Elemental

Na Elemental Tb Elemental

K Elemental Lu Elemental

As Elemental Ho Elemental

Hf Elemental Er Elemental

Ge Elemental Dy Elemental

V Elemental Tm Elemental

Te Elemental
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Supplementary Figure 8. (a) Learning curve for feature selection from ElemNet {E} feature Set, (b) 
Test MAE and R2 for MAX(DT, DO) regression corresponding to all ML algorithms using {E} 
feature set. (c) Mean score of best features selected from the {E} feature set (highly correlated 
features removed) for MAX(DT, DO). (d) Pearson correlation between the best {E} features (after 
removing highly correlated features) selected from feature ranking.
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Supplementary Figure 9. (a) Contour plot of best three hyperparameters utilized in the ML(ET) 
model using the selected {E} features for MAX(DT, DO) regression. (b) Hyperparameter 
importance plot for ML(Extra Trees Regressor) model, (c) Slice plots for bootstrap, max_depth, 
max_features, min_samples_leaf, min_samples_split, and n_estimators hyperparameters for the 
ML(Extra Trees Regressor) model. The legend bar shows number of trials.
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Supplementary Table S6. Predicted 14 stable spinel structures with excellent OER catalytic 
activity

Structure Ehull (eV) MAX(DT, DO) (eV)

CdSc2O4 0.038 3.408

CdRh2O4 0.030 2.830

ZnAl2O4 0.025 3.157

IrLi2O4 0.019 2.700

RuNa2O4 0.011 2.830

IrRb2O4 0 2.838

MoAg2O4 0 2.912

MoNa2O4 0 2.536

RuLi2O4 0 2.713

TcCs2O4 0 2.973

TcK2O4 0 3.089

TcLi2O4 0 2.742

TcNa2O4 0 3.134

TcRb2O4 0 3.060
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Supplementary Figure 10. The individual SHAP force plots for (a) MoAg2O4 and (b) MoNa2O4.
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Supplementary Figure 11. HAADF-STEM image and EDS elemental mapping images for (a) 
MoAg2O4 and (b) MoNa2O4.
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Supplementary Figure 12. (a) N2-sorption isotherms and (b) pore size distribution of MoAg2O4 and 
MoNa2O4.
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Supplementary Figure 13. The comparison chart of Rct and ECSA of MoAg2O4, MoNa2O4, 
ZnAl2O4, and RuO2 electrocatalysts, respectively.
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Supplementary Figure 14. The LSV curves of MoAg2O4 and MoNa2O4 samples normalized to (a) 
catalytic mass, (b) ECSA-, and (c) BET geometric surface area.
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