# **Supplementary Information for**

# Accelerating Materials Discovery for Electrocatalytic Water Oxidation via Center-Environment Deep Learning in Spinel Oxides

Yihang Li<sup>a</sup>, Xinying Zhang<sup>a</sup>, Tao Li<sup>a</sup>, Yingying Chen<sup>a</sup>, Yi Liu<sup>a</sup>& Lingyan Feng<sup>a,b,c,\*</sup>

<sup>a</sup> Materials Genome Institute, Shanghai University, Shanghai 200444, China

<sup>b</sup> Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China

<sup>c</sup>Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, School of Medicine, Shanghai University, Shanghai, 200444, China

#### 1. Machine Learning

# 1.1 Center-Environment (CE) feature

By conducting a comparative analysis between our developed Center-Environment (CE) feature construction method and several popular feature construction techniques currently employed in the field, we have demonstrated the unique aspects and advantages of the CE method in encoding the complex interplay of chemical and structural properties in materials science. This comparison not only highlights the innovative approach of CE in capturing intricate material characteristics but also underscores its efficacy in enhancing the predictive accuracy of machine learning models in materials science.

The CE method innovatively integrates the essential properties of chemical elements and pure substances, along with the compositional and structural nuances of crystal structures. For each element within the compound, we have meticulously selected a set of 56 fundamental properties, such as ion radius, atomic number, and electronegativity (detailed in Supplementary Table 1). These properties form the foundation of our machine learning training dataset, constructed using the CE feature model. Chemical descriptors, particularly that encapsulating crystal geometry information, play a pivotal role in augmenting the predictive accuracy of our machine learning model. The essence of the CE model lies in its approach to defining a central atom and its environmental atoms within a given structure. The model calculates the linearly weighted sum of the elementary feature properties of these environmental atoms, effectively capturing and encoding the chemical composition and structural information into the input feature vectors for machine learning. The weighting is generally inversely proportional to the distance between each environmental atom and the central atom. The detailed formulation and construction of the CE features are presented in equations (1)-(5).

 $D = [F_1, F_2, ..., F_n, T], n = 56$  \\* MERGEFORMAT (1)

$$F_i = [f_{C,i}, f_{E,i}], i = 1, 2, ..., 56$$
 \\* MERGEFORMAT (2)

$$f_{C,i} = p_{C,i}$$
 \\* MERGEFORMAT (3)

$$f_{E,i} = \sum_{i} \omega_{j} p_{j,i}$$
 \\* MERGEFORMAT (4)

$$\omega_{j} = \frac{\frac{1}{r_{j}}}{\sum_{i}^{N_{j}} \frac{1}{r_{i}}} \wedge \text{* MERGEFORMAT (5)}$$

where D represents a high-dimensional vector that characterizes the training/testing dataset. Within this dataset,  $F_i$  (i = 1-56) denotes one of the 56 elementary properties of elements or pure substances. Each  $F_i$  is structured as a two-dimensional vector, representing the property components of the central atom  $f_{C,i}$  and the environmental atom  $f_{E,i}$ , respectively. The target properties, denoted by T, are the focus of our predictive analysis. Here,  $p_{C,i}$  represents the property i of the central atom, while  $p_{j,i}$  signifies the property *i* of the environmental atom *j*. The weight of each environmental

atom,  $\omega_i$ , is determined by the reciprocal of  $r_i$ , the distance from the central atom to the

environmental atom j, where j indexes the environmental atoms ( $j = 1 - N_i$ ).

During the construction of CE features, atoms within a crystal structure are categorized into two distinct sets: central atoms and their surrounding environmental atoms. In spinel structures, A and B cation inequivalent sites are identified as the central atoms. The environmental atoms encompass those from the first nearest neighbors up to the nth nearest neighbors of the central atom. For this study, we limited our focus to the first nearest neighbors, a choice proven robust for predicting target properties in these systems. The space group symmetry dictates that A and B cations in spinel oxide structures occupy inequivalent sites. Consequently, we considered two types of central atoms and their corresponding environmental atoms (oxygen atoms in this study) in the CE feature construction process, namely dual center CE features.

To mitigate the impact of highly correlated features on the training of machine learning models, we computed the Pearson correlation coefficients among the features. Subsequently, we eliminated features from pairs with strong correlations, specifically those with a lower average importance ranking. This approach ensures that our model is trained on features that offer unique and non-redundant information, thereby improving the predictive performance and interpretability of the model. The Pearson correlation coefficient is defined as:

$$\rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^n (x_i - \overline{x})^2 \sum_{i=1}^n (y_i - \overline{y})^2}} \, \wedge \, \text{MERGEFORMAT}$$

| 1 | 1 | 1 |
|---|---|---|
| ( | n | ) |
| • | ~ |   |

The Pearson correlation coefficient  $\rho_{X,Y}$  is a statistical metric that measures the degree of linear association between two variables, X and Y. It is computed as the covariance of X and Y, denoted by cov(X,Y), divided by the product of their respective standard deviations,  $\rho_X$  and  $\rho_Y$ . The formula expresses this coefficient as the sum of the product of deviations of each observed value from their respective sample means ( $\overline{X}$  and  $\overline{Y}$ ) over all n samples, normalized by the product of the sums of the squares of these deviations for X and Y. In essence,  $\rho_{X,Y}$  provides a measure of how much Y changes with X on a standardized scale from -1 to 1, where -1 represents a perfect negative linear relationship, 0 indicates no linear relationship, and 1 signifies a perfect positive linear relationship.

#### 1.2 Feature engineering

To accurately predict the MAX( $D_T$ ,  $D_O$ ) values in spinel structures, we considered four different types of features as inputs for the machine learning model: a feature set {E} based on elemental

fractions (the ElemNet model), a Magpie feature set {M} considering only composition information, a Voronoi tessellations feature set {V} accounting for both composition and structural information, and a feature set {CE} we proposed that simultaneously includes both compositional and structural information. The feature set {E} based on elemental fractions includes the elemental fractions and stoichiometric ratios of each component in the crystal structure. The Magpie feature set {M} consists of 87 elemental descriptors such as atomic number, atomic radius, and electronegativity. The Voronoi tessellations feature set {V} describes the local environment around each atom, represented using Voronoi polyhedra, and includes the volume, surface area, and number of faces for each polyhedron. Lastly, our proposed feature set {CE} encodes both compositional and structural information into the machine learning input features by defining a set of central atoms and surrounding atoms in the crystal structure, as well as the weights for each surrounding atom. By comparing the performance of different types of features, we can evaluate their effectiveness in predicting the properties of spinel structures. Furthermore, our proposed compositional and structural feature set {CE} is expected to provide additional information about the crystal structure, thereby improving the accuracy of the machine learning model.

Given that each feature set contains a large number of features ({E}, {M}, {V}, and {CE} feature sets contain 71, 96, 271, and 224 features respectively), selecting the most representative features is crucial for optimizing the predictive performance of the machine learning model and avoiding overfitting. To this end, several types of ML algorithms were employed to calculate the importance scores for all features to perform average feature ranking. These ML algorithms include Ridge Regression, Least Absolute Shrinkage and Selection Operator (LASSO), Random Forests (RF), Recursive Feature Elimination (RFE), Support Vector Regression (SVR), and Extreme Gradient Boosting (XGBoost). This approach better samples the important features, as each type of ML algorithm calculates the correlation between each feature and the target variable in a unique way. Each algorithm can provide different rankings for all features, and the features with the highest average ranking should be selected. The Python library Pycaret<sup>1</sup> was used to train each feature set and the best features were selected based on the learning curve. To avoid linear correlation between features, Pearson correlation coefficients between all feature pairs were also calculated. From feature pairs with a Pearson correlation coefficient > 0.90, the feature with the higher average ranking was selected.

After a series of meticulous feature selection and optimization, we identified key features suitable for subsequent machine learning research. Additionally, using the same optimization methods, we selected 18 features from the {M} feature set (out of a total of 28), and 45 features from the {V} feature set (out of a total of 55). Notably, because the feature set {E} includes complete information on the elemental composition for each structure, the absence of any feature will affect the accurate representation of the corresponding elemental composition by the model. Hence, we chose to retain all 71 features in the {E} feature set, as detailed in Supplementary Table 3, Supplementary Table 4, and Supplementary Table 5 in Supporting Information.

#### 2. DFT calculations

2.1 High-throughput electronic structure calculation

We employed Density Functional Theory (DFT) and used the Vienna ab initio Simulation Package  $(VASP)^2$  version 5.4.4 for calculations. To ensure the accuracy and rigor of the calculations, we used the Projector Augmented Wave (PAW) basis set, set the cut-off energy to 520 eV, and

employed the Perdew-Burke-Ernzerhof (PBE)<sup>3</sup> Generalized Gradient Approximation (GGA) exchange-correlation functional. The rotationally invariant GGA + U approach was applied using the U-J value of 4.0 eV on the Mo<sup>4</sup> 4d orbitals and 6 eV to the Ag<sup>5</sup> 4d orbitals. A k-point convergence test was carried out to determine the appropriate integration scheme in the Brillouin zone, finally selecting a  $7 \times 7 \times 7$  k-point grid. All geometric structures were fully relaxed under the guidance of the conjugate gradient method until the total energy change between two self-consistent calculations was less than 10<sup>-5</sup> eV. Additionally, spin polarization was considered in all calculations.

The energy of the metal d-band or the oxygen 2p-band center is determined by the following equation:

$$\varepsilon = \frac{\int E\rho(E)dE}{\int \rho(E)dE} \qquad \qquad \land * \text{ MERGEFORMAT (7)}$$

where  $\mathcal{E}$  is the energy center of the metal d band or the oxygen 2p-band.  $\rho(E)$  and E are the density

of the state and the energy value, respectively.

## 2.2 OER mechanism

For OER intermediate (such as OH\*, O\*, and OOH\*) adsorption studies, the low-index (111) surface was used to model the intermediate adsorption on the  $MoAg_2O_4$  and  $MONa_2O_4$  surfaces. The employed slab model was designed with multiple atomic layers, incorporating a sufficient number of atoms to ensure a representative surface structure. During structural optimization, a segment of the slab closer to the surface was allowed to relax to capture the dynamic nature of adsorption, while the remaining part was kept fixed to maintain structural integrity and emulate the bulk properties. A 12 Å vacuum space was added to two continuous slabs to eliminate the possible interactions from adjacent periodic images. In the condition of alkaline OER, the well-accepted process involves three adsorbed intermediates (\*OH, \*O, and \*OOH) and four steps as follows<sup>6</sup>:

 $OH^- + * \leftrightarrow * OH + e^-$  \\* MERGEFORMAT (8) \*  $OH^- \leftrightarrow * O + H O(1) + e^-$  \\* MERCEFORMAT (9)

$$OH + OH \leftrightarrow O + H_2O(1) + e$$
 \\* MERGEFORMAT (9)

$$^{\circ}O + OH^{-} \leftrightarrow ^{\circ}OOH + e^{-} \wedge ^{\circ}MERGEFORMAT (10)$$

$$^{\circ}OOH + OH^{-} \leftrightarrow O_{2} + * + H_{2}O(l) + e^{-} \times MERGEFORMAT (11)$$

where \* stands for the active sites in catalysts.

The free energy values of OER elementary steps were calculated by the equation:

$$\Delta \mathbf{G} = \Delta E_{ads} + \Delta E_{ZPE} - T\Delta S_{ads} \qquad \land * \text{ MERGEFORMAT (12)}$$

where  $\Delta E_{ads}$  is the adsorption energy,  $\Delta E_{ZPE}$  is the zero-point energy difference between adsorbed and gaseous species, and  $T\Delta S_{ads}$  is the corresponding entropy difference between these two states (T was set to be 298.15 K).

The free energy values of OER intermediates (\*OH, \*O, and \*OOH) were calculated as follows:

$$\Delta G_{(*OH)} = G_{*OH} - G_{*} - \left(G_{H_2O} - 1/2G_{H_2}\right) \land \text{MERGEFORMAT} (13)$$

$$\Delta G_{(*O)} = G_{*O} - G_{*} - \left(G_{H_2O} - G_{H_2}\right) \quad \text{`* MERGEFORMAT (14)}$$

$$\Delta G_{(*OOH)} = G_{*OOH} - G_{*} - \left(2G_{H_2O} - 3/2G_{H_2}\right) \text{`* MERGEFORMAT}$$
15)

where,  $G_{*_{OH}}$ ,  $G_{*_{O}}$  and  $G_{*_{OOH}}$  were Gibbs free energies of adsorption of OH, O, and OOH species, respectively. The represented the Gibbs free energy of clean catalytic surface. In addition,  $G_{H_2O}$  and

 $G_{H_2}$  were calculated Gibbs free energies of H<sub>2</sub>O and H<sub>2</sub> molecules in gas phase.

For the OER process calculation, a standard four-electron reaction mechanism in alkaline condition was considered for the calculation of Gibbs free energy change for steps 8-11 according to the previous study<sup>6</sup>:

$$\Delta G_{1} = \Delta G_{*_{OH}} - eU + \Delta G_{H+}(pH) \qquad \land \text{MERGEFORMAT (16)}$$

$$\Delta G_{2} = \Delta G_{*_{O}} - \Delta G_{*_{OH}} - eU + \Delta G_{H+}(pH) \land \text{MERGEFORMAT (17)}$$

$$\Delta G_{3} = \Delta G_{*_{OOH}} - \Delta G_{*_{O}} - eU + \Delta G_{H+}(pH) \land \text{MERGEFORMAT (18)}$$

$$\Delta G_{4} = 4.92[eV] - \Delta G_{*_{OOH}} - eU + \Delta G_{H+}(pH) \land \text{MERGEFORMAT (18)}$$

(19)

(

where U is the potential measured against normal hydrogen electrode (NHE) at standard conditions (T = 298.15 K, P = 1 bar).

The theoretical overpotential is then readily defined as:

$$\eta = \max\left(\Delta G_1, \Delta G_2, \Delta G_3, \Delta G_4\right) / e - 1.23 \land * \text{MERGEFORMAT} (20)$$

The free energy change of the protons relative to the above specified electrode at non-zero pH is represented by Nernst equation as:

$$\Delta G_{H+}(\mathbf{pH}) = -k_B T \ln(10) \times \mathbf{pH} \qquad \forall \text{MERGEFORMAT} (21)$$

# 3. Experimental section

## 3.1 Chemical reagents

Ethanol (AR grade) was obtained from Sinopharm Chemical Reagent Co., Ltd. Bis(acetylacetonato)dioxomolybdenum(VI) ( $C_{10}H_{14}MoO_6$ , 97%), sodium nitrate (NaNO<sub>3</sub>, AR, ≥99%), citric acid ( $C_6H_8O_7$ ·H<sub>2</sub>O, 99.995%), sodium molybdate dihy drate (Na<sub>2</sub>MoO<sub>4</sub>·2H<sub>2</sub>O, AR, 99%), silver nitrate (AgNO<sub>3</sub>, AR, 99%), Zinc nitrate (Zn(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O, AR, 99%), and Aluminum nitrate (Al(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O, AR, 99%) were acquired from Aladdin Industry Corporation. All of the chemicals were used without further purification. Deionized (DI)-water (with a specific resistance of 18.2 MΩ cm) was obtained from Millipore water purification system and was used during the whole experiments.

#### 3.2 Sample preparation

For the synthesis of  $MoNa_2O_4$  via the sol-gel method, a typical procedure was employed. Initially, 6 mmol of molybdenum acetylacetonate (Mo(acac)<sub>3</sub>) and 12 mmol of sodium nitrate (NaNO<sub>3</sub>) were homogeneously dissolved in a dilute nitric acid solution composed of 30 mL of ultrapure water and 5 mL of nitric acid under rigorous stirring conditions. Subsequently, 15 mmol of citric acid was added to serve as a chelating agent to enhance the uniformity and stability of the metal ions within the mixture. The blend was then subjected to constant stirring in an oil bath maintained between 80-100 °C to induce the formation of a highly viscous gel. This gel was transferred to a preheated oven set at 170 °C for a drying period of 12 hours. Finally, the dried gel was calcined in a muffle furnace at 300 °C with a carefully controlled heating rate of 5 °C/min for 3 hours, yielding high-purity MoNa<sub>2</sub>O<sub>4</sub> powder.

For the hydrothermal synthesis of  $MoAg_2O_4$ , an initial solution (solution A) was prepared by dissolving 0.6440 g of  $Na_2MoO_4 \cdot 2H_2O$  in 40 mL of deionized water. Concurrently, another solution (solution B) was prepared by dissolving 0.9043 g of silver nitrate (AgNO<sub>3</sub>) in 40 mL of deionized water. Solution A was gradually titrated into Solution B under intense stirring, resulting in a stable colloidal suspension. This suspension was then transferred into a 100 mL stainless steel autoclave and subjected to a hydrothermal treatment at 120 °C for 2 hours. Upon completion, the solid product was isolated by centrifugation, thoroughly washed with deionized water and anhydrous ethanol, and subsequently dried overnight at 60 °C to obtain high-purity  $MoAg_2O_4$  powder.

The ZnAl<sub>2</sub>O<sub>4</sub> catalyst was synthesized using an isopropanol-mediated controlled hydrolysis method. Typically, 2.975 g of Zn(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O and 7.5 g of Al(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O were dissolved in 50 mL of isopropanol, with the Zn<sup>2+</sup>/Al<sup>3+</sup> ratio set to a stoichiometric value of 1:2 for ZnAl<sub>2</sub>O<sub>4</sub>. The solution was transferred to a 100 mL high-pressure vessel, stirred at ambient temperature for 2 hours, then heated in an oven to 200 °C and allowed to react for 10 hours. Subsequently, the resulting precipitate was collected by centrifugation, washed several times with ethanol and ultrapure water, dried at 90 °C for 5 hours, and finally calcined at 600 °C for 5 hours to obtain the ZnAl<sub>2</sub>O<sub>4</sub> catalyst.

#### 3.3 Characterization

Field emission scanning electron microscope (FE-SEM, Zeiss Sigma 500) and transmission electron microscopy (TEM, JEM-2100F, 200 kV) were employed to obtain the morphologies and elemental mapping images, respectively. The crystal structures were characterized by an X-ray diffraction (XRD, Bruker-D2 PHASE X-ray diffraction system, Cu k $\alpha$  radiation,  $\lambda$ =1.5418 Å). Fourier transform infrared spectra (FTIR) were recorded on a FTIR spectrometer (Nicolet iS 50, Thermo Scientific). UV-vis absorption spectra were collected on PerkinElmer Lambda 750 spectrophotometer. Raman was carried out by a Nanofinder 30A Raman spectrometer with a 532 nm laser source (Tokyo Instruments, Inc). X-ray photoelectron spectra (XPS) were recorded on an ESCALAB 250xi X-ray photoelectron spectrometer (Thermo Scientific) to investigate the surface chemical environment of samples.

## 3.4 Electrochemical measurements

The electrocatalytic performances of electrocatalysts were tested on a typical three-electrode system using an Autolab electrochemical workstation. A graphite rod and Hg/HgO (1 M KOH)

electrode were used as the counter electrode and reference electrode. In order to prepare the working electrode (WE), 4 mg of the synthesized electrocatalyst powder was dispersed in 500  $\mu$ L of a mixed solution consisting of ultrapure water, isopropanol, and 5 wt% Nafion with volumes of 380  $\mu$ L, 100  $\mu$ L, and 20  $\mu$ L, respectively. After sonification for 60 min, 80  $\mu$ L of the resulting suspension was drop-cast onto a pre-cleaned nickel foam electrode (NF) with a surface area of 1 cm<sup>2</sup>, achieving a mass loading of 0.64 mg cm<sup>-2</sup>. Then, the WE could be further used after drying at room temperature. Prior all the electrochemical measurements, cyclic voltammetry (CV) method was carried out to activate the electrocatalysts at 50 mV/s. Linear sweep voltammetry (LSV) was performed to record the OER polarization curves with 95% iR-correction at a scan rate of 5 mV s<sup>-1</sup> in O<sub>2</sub>-saturated 1 M KOH electrolyte. The electrochemical impedance spectroscopy (EIS) was measured from 10<sup>5</sup> to 10<sup>-1</sup> Hz with the amplitude of 0.005 V. Additionally, the stability tests were carried out by chronoamperometry (CP) method at a constant current density of 10 mA cm<sup>-2</sup>. All the measured potential versus Hg/HgO were normalized to RHE by the following equation:

$$E_{RHE} = E_{Hg/HgO} + 0.059 \times pH + 0.098 \quad (* \text{ MERGEFORMAT (22)})$$

| Index | Symbol            | Feature name                                               | Feature type         |
|-------|-------------------|------------------------------------------------------------|----------------------|
| 1     | $f_{0.5}$         | Atomic electron scattering factor at 0.5                   | Elemental            |
| 2     | $N_{AE}$          | Atomic environment number (Villars, Daams)                 | Elemental            |
| 3     | $Z_{lt-lr}$       | Atomic number start counting left top, left-right sequence | Elemental            |
| 4     | $A_r$             | Atomic weight                                              | Elemental            |
| 5     | $T_{b}$           | Boiling temperature                                        | Elementary substance |
| 6     | $Z_{eff}^{\ C}$   | Charge nuclear effective (Clementi)                        | Elemental            |
| 7     | К                 | Compression modulus                                        | Elementary substance |
| 8     | ρ                 | Density                                                    | Elementary substance |
| 9     | $d_c$             | Distance from core electron (Schubert)                     | Elemental            |
| 10    | $d_v$             | Distance from valence electron (Schubert)                  | Elemental            |
| 11    | $Z^{chem}_{eq}$   | Electrochemical weight equivalent                          | Elemental            |
| 12    | $E_{ea}$          | Electron affinity                                          | Elemental            |
| 13    | $\chi_{AR}$       | Electronegativity (Alfred-Rochow)                          | Elemental            |
| 14    | $\chi_{MB}$       | Electronegativity (Martynov&Batsanov)                      | Elemental            |
| 15    | $\chi_P$          | Electronegativity (Pauling)                                | Elemental            |
| 16    | Xa                | Electronegativity absolute                                 | Elemental            |
| 17    | E <sub>c</sub>    | Energy cohesive (Brewer)                                   | Elemental            |
| 18    | $Z_{i}^{1st}$     | Energy of ionization first                                 | Elemental            |
| 19    | $Z^{2nd}_{i}$     | Energy of ionization second                                | Elemental            |
| 20    | $Z^{3rd}_{i}$     | Energy of ionization third                                 | Elemental            |
| 21    | $\Delta H_{at}$   | Enthalpy of atomization                                    | Elemental            |
| 22    | $\Delta H_m$      | Enthalpy of melting                                        | Elementary substance |
| 23    | $\Delta H_v$      | Enthalpy of vaporization                                   | Elementary substance |
| 24    | S <sub>s</sub>    | Entropy of solid                                           | Elementary substance |
| 25    | $N_{G}$           | Group number                                               | Elemental            |
| 26    | ν                 | Magnetic frequency of nuclei                               | Elemental            |
| 27    | μ                 | Magnetic resonance                                         | Elemental            |
| 28    | $\mu_{MoK\alpha}$ | Mass attenuation coefficient for MoKa                      | Elemental            |
| 29    | $T_m$             | Melting temperature                                        | Elementary substance |
| 30    | $M_{chem}$        | Mendeleev chemists sequence                                | Elemental            |
| 31    | $M_{dtL}$         | Mendeleev d-t start left                                   | Elemental            |
| 32    | $M_{dtR}$         | Mendeleev d-t start right                                  | Elemental            |
| 33    | $M_{HdtL}$        | Mendeleev H d-t start left                                 | Elemental            |
| 34    | $M_{HdtR}$        | Mendeleev H d-t start right                                | Elemental            |
| 35    | $M_{HtdL}$        | Mendeleev H t-d start left                                 | Elemental            |
| 36    | $M_{HtdR}$        | Mendeleev H t-d start right                                | Elemental            |
| 37    | $M_{Pett}$        | Mendeleev Pettifor                                         | Elemental            |
| 38    | $M_{PettR}$       | Mendeleev Pettifor regular                                 | Elemental            |
| 39    | $M_{tdL}$         | Mendeleev t-d start left                                   | Elemental            |
| 40    | $M_{tdR}$         | Mendeleev t-d start right                                  | Elemental            |
| 41    | C <sub>m</sub>    | Molar heat capacity                                        | Elementary substance |

Supplementary Table 1. Atomic and structural properties of elements and pure substances as elementary properties.<sup>7</sup>

Supplementary Table 1 (continued)

| Index | Symbol         | Feature name                                                  | Feature type |
|-------|----------------|---------------------------------------------------------------|--------------|
| 42    | $\mu_n$        | Moment nuclear magnetic                                       | Elemental    |
| 43    | $Z_{eff}^{S}$  | Nuclear charge effective (Slater)                             | Elemental    |
| 44    | $OS_1$         | Oxidation state first                                         | Elemental    |
|       | $N_{br-rl}$    | Periodic number start counting bottom right, right-left       | Elemental    |
| 45    |                | sequence                                                      |              |
|       | $N_{lb-lr}$    | Periodic number start counting left bottom, left-right        | Elemental    |
| 46    |                | sequence                                                      |              |
| 47    | $N_{tr-rl}$    | Periodic number start counting top right, right-left sequence | Elemental    |
| 48    | $N_q$          | Quantum number                                                | Elemental    |
| 49    | R <sub>c</sub> | Radii covalent                                                | Elemental    |
| 50    | $R_m$          | Radii metal (Waber)                                           | Elemental    |
| 51    | $R_{ps}$       | Radii pseudo-potential (Zunger)                               | Elemental    |
| 52    | L              | Spectral lines n <sub>o</sub>                                 | Elemental    |
| 53    | Ι              | Spin nuclei                                                   | Elemental    |
| 54    | $\sigma_{th}$  | Thermal neutron capture cross section                         | Elemental    |
| 55    | $n_{val}$      | Valence electron number                                       | Elemental    |
| 56    | $V_{atom}$     | Volume of atom (Villars, Daams)                               | Elemental    |

| Symbol            | Feature name                      | Atomic environment type | Feature type           |
|-------------------|-----------------------------------|-------------------------|------------------------|
| $n_{val}$         | Valence electron number           | O <sub>C</sub>          | Elemental& Structural  |
| $n_{val}$         | Valence electron number           | T <sub>C</sub>          | Elemental& Structural  |
| ρ                 | Compression modulus               | T <sub>C</sub>          | Elemental& Structural  |
| $R_{ps}$          | Radii pseudo-potential            | O <sub>C</sub>          | Elemental& Structural  |
| $M_{pett}$        | Mendeleev Pettifor                | O <sub>C</sub>          | Elemental& Structural  |
| $M_{HdtL}$        | Mendeleev H d-t start left        | O <sub>C</sub>          | Elemental& Structural  |
| ν                 | Magnetic frequency of nuclei      | O <sub>C</sub>          | Elemental& Structural  |
| K                 | Compression modulus               | T <sub>C</sub>          | Elemental& Structural  |
| K                 | Compression modulus               | O <sub>C</sub>          | Elemental& Structural  |
| $\Delta H_{at}$   | Enthalpy of atomization           | T <sub>C</sub>          | Elemental& Structural  |
| $E^{3rd}_{i}$     | Energy of ionization third        | O <sub>C</sub>          | Elemental& Structural  |
| $T_{b}$           | Boiling temperature               | $O_{C}$                 | Elemental& Structural  |
| $M_{lt-lr}$       | Atomic number start counting left | $O_{C}$                 | Elemental& Structural  |
|                   | top, left-right sequence          |                         |                        |
| $R_m$             | Radii metal                       | T <sub>C</sub>          | Elemental& Structural  |
| $M_{pett}$        | Mendeleev Pettifor                | T <sub>C</sub>          | Elemental& Structural  |
| ν                 | Magnetic frequency of nuclei      | T <sub>C</sub>          | Elemental& Structural  |
| $V_{atom}$        | Volume of atom                    | T <sub>C</sub>          | Elemental& Structural  |
| $\chi_P$          | Electronegativity                 | T <sub>C</sub>          | Elemental& Structural  |
| $R_{ps}$          | Radii pseudo-potential            | T <sub>C</sub>          | Elemental& Structural  |
| $M_{tdL}$         | Mendeleev t-d start right         | T <sub>C</sub>          | Elemental& Structural  |
| $\Delta H_m$      | Enthalpy of melting               | T <sub>C</sub>          | Elemental& Structural  |
| $Z_{eff}^{S}$     | Nuclear charge effective          | T <sub>C</sub>          | Elemental& Structural  |
| $d_v$             | Distance from core electron       | T <sub>C</sub>          | Elemental& Structural  |
| ρ                 | Compression modulus               | $O_{C}$                 | Elemental& Structural  |
| $\mu_n$           | Moment nuclear magnetic           | O <sub>C</sub>          | Elemental& Structural  |
| $N_{lb-lr}$       | Periodic number start counting    | T <sub>C</sub>          | Elemental& Structural  |
|                   | bottom right, right-left sequence |                         |                        |
| $E_{i}^{1st}$     | Energy of ionization first        | O <sub>C</sub>          | Elemental& Structural  |
| $\chi_{MB}$       | Electronegativity                 | $O_C$                   | Elemental& Structural  |
| $N_{AE}$          | Atomic environment number         | T <sub>C</sub>          | Elemental& Structural  |
| Χa                | Electronegativity absolute        | T <sub>C</sub>          | Elemental& Structural  |
| E <sub>ea</sub>   | Electron affinity                 | T <sub>C</sub>          | Elemental& Structural  |
| M <sub>chem</sub> | Mendeleev chemists sequence       | $O_{C}$                 | Elemental& Structural  |
| $E^{2nd}_{i}$     | Energy of ionization second       | T <sub>C</sub>          | Elemental& Structural  |
| $T_m$             | Melting temperature               | $O_{\rm C}$             | Elemental& Structural  |
| V <sub>atom</sub> | Volume of atom                    | O <sub>C</sub>          | Elemental& Structural  |
| $\Delta H_m$      | Enthalpy of melting               | 0 <sub>c</sub>          | Elemental& Structural  |
| S.                | Entropy of solid                  | 0 <sub>c</sub>          | Elemental& Structural  |
| E <sup>3rd</sup>  | Energy of ionization third        | T <sub>C</sub>          | Elemental& Structural  |
| - 1<br>I          | Spectral lines no                 | 0-                      | Flemental & Structural |
| L<br>I            | Spectral lines no                 | О <sub>С</sub><br>Т.    | Elemental& Structural  |
| L                 | Spectral lines no                 | T <sub>C</sub>          | Elemental& Structura   |

Supplementary Table 2: List of all Center-Environment {CE} features selected from mean feature ranking utilized in the present study



\*T<sub>C</sub> and O<sub>C</sub> respectively represent the feature of the central atoms at tetrahedral and octahedral sites.

Supplementary Figure 1. (a) Learning curve for feature selection from {CE} feature Set, (b) Contour plot of best three hyperparameters utilized in the ML(ET) model using the selected {CE} features for MAX( $D_T$ ,  $D_O$ ) regression, (c) Hyperparameter importance plot for ML(Extra Trees Regressor) model, (d) Slice plots for bootstrap, max\_depth, max\_features, min\_samples\_leaf, min\_samples\_split, and n\_estimators hyperparameters for the ML(Extra Trees Regressor) model. The legend bar shows number of trials.

| Symbol                    | Feature name                        | Feature type |
|---------------------------|-------------------------------------|--------------|
| $\min v_{unfilled}$       | MagpieData minimum NUnfilled        | Elemental    |
| $\min v_s$                | MagpieData minimum NsValence        | Elemental    |
| $\max v_d$                | MagpieData maximum NdValence        | Elemental    |
| ${ar W}_{atomic}$         | MagpieData mean AtomicWeight        | Elemental    |
| $\overline{R}_{covalent}$ | MagpieData mean CovalentRadius      | Elemental    |
| $\delta_{column}$         | MagpieData avg_dev Column           | Elemental    |
| $R_{valence}$             | MagpieData range NValence           | Elemental    |
| $\bar{n}_{d,unfilled}$    | MagpieData mean NdUnfilled          | Elemental    |
| $\bar{n}_{valence}$       | MagpieData mean NValence            | Elemental    |
| $\bar{n}_{unfilled}$      | MagpieData mean NUnfilled           | Elemental    |
| $\delta V_{GS}$           | MagpieData avg_dev GSvolume_pa      | Elemental    |
| $\delta S_{group}$        | MagpieData avg_dev SpaceGroupNumber | Elemental    |
| $\delta T_{melt}$         | MagpieData avg_dev MeltingT         | Elemental    |
| $\overline{n}_d$          | MagpieData mean NdValence           | Elemental    |
| min C <sub>column</sub>   | MagpieData minimum Column           | Elemental    |
| $R_{p,unfilled}$          | MagpieData range NpUnfilled         | Elemental    |
| $\min M_{Mendeleev}$      | MagpieData minimum MendeleevNumber  | Elemental    |
| $\bar{n}_{p,unfilled}$    | MagpieData mean NpUnfilled          | Elemental    |

Supplementary Table 3: List of all Magpie  $\{M\}$  features selected from mean feature ranking utilized in the present study



Supplementary Figure 2. (a) Learning curve for feature selection from Magpie {M} feature Set, (b) Mean score of best features selected from the {M} feature set (highly correlated features removed) for MAX(D<sub>T</sub>, D<sub>O</sub>). (c) Pearson correlation between the best {M} features (after removing highly correlated features) selected from feature ranking. (d) Test MAE and R<sup>2</sup> for MAX(D<sub>T</sub>, D<sub>O</sub>) regression corresponding to all ML algorithms using {M} feature set.



Supplementary Figure 3. (a) Contour plot of best three hyperparameters utilized in the ML(ET) model using the selected  $\{M\}$  features for MAX(D<sub>T</sub>, D<sub>O</sub>) regression. (b) Hyperparameter importance plot for ML(Extra Trees Regressor) model, (c) Slice plots for bootstrap, max\_depth, max\_features, min\_samples\_leaf, min\_samples\_split, and n\_estimators hyperparameters for the ML(Extra Trees Regressor) model. The legend bar shows number of trials.



Supplementary Figure 4. (a) Global SHAP feature importance plot and (b) Simplified version of the SHAP feature importance summary plot for  $MAX(D_T, D_O)$  ({M}, ET model), arranged in the order of their decreasing importance.

| Symbol                          | Feature name                            | Feature type          |
|---------------------------------|-----------------------------------------|-----------------------|
| $\bar{\nu}_{NpV,s1}$            | mean_NeighDiff_shell1_NpValence         | Elemental& Structural |
| $\max(\omega_{s1})$             | max_NeighDiff_shell1_AtomicWeight       | Elemental& Structural |
| $\min(c_{s1})$                  | min_NeighDiff_shell1_Column             | Elemental& Structural |
| min ( <i>m</i> )                | min_MendeleevNumber                     | Elemental& Structural |
| min ( <i>u</i> )                | min_NUnfilled                           | Elemental& Structural |
| $\max(c_{s1})$                  | max_NeighDiff_shell1_Column             | Elemental& Structural |
| $\overline{v}$                  | mean_NValance                           | Elemental& Structural |
| $\sigma^2(c_{s1})$              | var_NeighDiff_shell1_Column             | Elemental& Structural |
| $\bar{r}_{s1}$                  | mean_NeighDiff_shell1_Row               | Elemental& Structural |
| $\Delta v$                      | maxdiff_NValance                        | Elemental& Structural |
| δυ                              | dev_NValance                            | Elemental& Structural |
| $\bar{c}_{s1}$                  | mean_NeighDiff_shell1_Column            | Elemental& Structural |
| $\min(\varphi_{s1})$            | min_NeighDiff_shell1_GSvolume_pa        | Elemental& Structural |
| $\overline{T}_m$                | mean_MeltingT                           | Elemental& Structural |
| R <sub>c</sub>                  | mean_CovalentRadius                     | Elemental& Structural |
| $\max\left(\nu_{NdV,s1} ight)$  | max_NeighDiff_shell1_NdValence          | Elemental& Structural |
| $\sigma^2(R_{c,s1})$            | var_NeighDiff_shell1_CovalentRadius     | Elemental& Structural |
| $\max(\varphi_{s1})$            | max_NeighDiff_shell1_GSvolume_pa        | Elemental& Structural |
| $\delta g$                      | dev_SpaceGroupNumber                    | Elemental& Structural |
| $R(v_{s1})$                     | range_NeighDiff_shell1_NValance         | Elemental& Structural |
| $R(v_{NdV,s1})$                 | range_NeighDiff_shell1_NdValence        | Elemental& Structural |
| $\sigma^2(T_{m,s1})$            | var_NeighDiff_shell1_MeltingT           | Elemental& Structural |
| $\min(n_{s1})$                  | min_NeighDiff_shell1_Number             | Elemental& Structural |
| $\bar{u}_{Nd,s1}$               | mean_NeighDiff_shell1_NdUnfilled        | Elemental& Structural |
| ū                               | mean_NUnfilled                          | Elemental& Structural |
| $\max(g_{s1})$                  | max_NeighDiff_shell1_SpaceGroupNumber   | Elemental& Structural |
| $\bar{\nu}_{NdV,s1}$            | mean_NeighDiff_shell1_NdValence         | Elemental& Structural |
| $R(\omega_{s1})$                | range_NeighDiff_shell1_AtomicWeight     | Elemental& Structural |
| $\min\left(T_{m,s1}\right)$     | min_NeighDiff_shell1_MeltingT           | Elemental& Structural |
| $\min(v_{s1})$                  | min_NeighDiff_shell1_NValance           | Elemental& Structural |
| $\min(\nu_s)$                   | min_NsValence                           | Elemental& Structural |
| $\Delta u$                      | maxdiff_NUnfilled                       | Elemental& Structural |
| $R(g_{s1})$                     | range_NeighDiff_shell1_SpaceGroupNumber | Elemental& Structural |
| $\sigma^2(g_{s1})$              | var_NeighDiff_shell1_SpaceGroupNumber   | Elemental& Structural |
| $\max\left(T_{m,s1}\right)$     | max_NeighDiff_shell1_MeltingT           | Elemental& Structural |
| $\min\left(\nu_{NdV,s1}\right)$ | min_NeighDiff_shell1_NdValence          | Elemental& Structural |
| $\sigma^2(u_{Nd,s1})$           | var_NeighDiff_shell1_NdUnfilled         | Elemental& Structural |
| min ( <i>e</i> )                | min_EffectiveCoordination               | Elemental& Structural |
| $R(m_{s1})$                     | range_NeighDiff_shell1_MendeleevNumber  | Elemental& Structural |
| $R(R_{c,s1})$                   | range_NeighDiff_shell1_CovalentRadius   | Elemental& Structural |
| $\min(u_{s1})$                  | min_NeighDiff_shell1_NUnfilled          | Elemental& Structural |

Supplementary Table 4: List of all Voronoi {V} features selected from mean feature ranking utilized in the present study

Supplementary Table 4 (continued)

| $R(r_{s1})$        | range_NeighDiff_shell1_Row           | Elemental& Structural |
|--------------------|--------------------------------------|-----------------------|
| $R(c_{s1})$        | range_NeighDiff_shell1_Column        | Elemental& Structural |
| $\sigma^2(m_{s1})$ | var_NeighDiff_shell1_MendeleevNumber | Elemental& Structural |
| $\delta f$         | dev_NfUnfilled                       | Elemental& Structural |



Supplementary Figure 5. (a) Learning curve for feature selection from Voronoi $\{V\}$  feature Set, (b) Test MAE and R<sup>2</sup> for MAX(D<sub>T</sub>, D<sub>O</sub>) regression corresponding to all ML algorithms using  $\{M\}$  feature set. (c) Mean score of best features selected from the  $\{M\}$  feature set (highly correlated features removed) for MAX(D<sub>T</sub>, D<sub>O</sub>). (d) Pearson correlation between the best  $\{M\}$  features (after removing highly correlated features) selected from feature ranking.



Supplementary Figure 6. (a) Global SHAP feature importance plot and (b) Simplified version of the SHAP feature importance summary plot for MAX( $D_T$ ,  $D_O$ ) ({V}, ET model), arranged in the order of their decreasing importance.



Supplementary Figure 7. (a) Contour plot of best three hyperparameters utilized in the ML(ET) model using the selected  $\{V\}$  features for MAX(D<sub>T</sub>, D<sub>O</sub>) regression. (b) Hyperparameter importance plot for ML(Extra Trees Regressor) model, (c) Slice plots for bootstrap, max\_depth, max\_features, min\_samples\_leaf, min\_samples\_split, and n\_estimators hyperparameters for the ML(Extra Trees Regressor) model. The legend bar shows number of trials.

| Feature name | Feature type | Feature name | Feature type |
|--------------|--------------|--------------|--------------|
| Zn           | Elemental    | Re           | Elemental    |
| Cd           | Elemental    | Th           | Elemental    |
| Tl           | Elemental    | Pu           | Elemental    |
| Hg           | Elemental    | Sb           | Elemental    |
| U            | Elemental    | Zr           | Elemental    |
| Be           | Elemental    | Eu           | Elemental    |
| Mg           | Elemental    | Os           | Elemental    |
| Sr           | Elemental    | Ag           | Elemental    |
| Cr           | Elemental    | Pb           | Elemental    |
| Ca           | Elemental    | La           | Elemental    |
| Ni           | Elemental    | Sn           | Elemental    |
| Мо           | Elemental    | Rh           | Elemental    |
| Ba           | Elemental    | Rb           | Elemental    |
| W            | Elemental    | Pd           | Elemental    |
| Mn           | Elemental    | Ga           | Elemental    |
| Yb           | Elemental    | Au           | Elemental    |
| Fe           | Elemental    | In           | Elemental    |
| Ра           | Elemental    | Ir           | Elemental    |
| Si           | Elemental    | Bi           | Elemental    |
| Ta           | Elemental    | Pt           | Elemental    |
| Ru           | Elemental    | Nd           | Elemental    |
| Al           | Elemental    | Cs           | Elemental    |
| Li           | Elemental    | Pr           | Elemental    |
| Ce           | Elemental    | Sc           | Elemental    |
| Tc           | Elemental    | Ac           | Elemental    |
| Np           | Elemental    | Pm           | Elemental    |
| Ti           | Elemental    | Sm           | Elemental    |
| Co           | Elemental    | Gd           | Elemental    |
| Cu           | Elemental    | Y            | Elemental    |
| Na           | Elemental    | Tb           | Elemental    |
| K            | Elemental    | Lu           | Elemental    |
| As           | Elemental    | Но           | Elemental    |
| Hf           | Elemental    | Er           | Elemental    |
| Ge           | Elemental    | Dy           | Elemental    |
| V            | Elemental    | Tm           | Elemental    |
| Te           | Elemental    |              |              |

Supplementary Table 5: List of all ElemNet {E} features selected from mean feature ranking utilized in the present study



Supplementary Figure 8. (a) Learning curve for feature selection from ElemNet {E} feature Set, (b) Test MAE and R<sup>2</sup> for MAX(D<sub>T</sub>, D<sub>0</sub>) regression corresponding to all ML algorithms using {E} feature set. (c) Mean score of best features selected from the {E} feature set (highly correlated features removed) for MAX(D<sub>T</sub>, D<sub>0</sub>). (d) Pearson correlation between the best {E} features (after removing highly correlated features) selected from feature ranking.



Supplementary Figure 9. (a) Contour plot of best three hyperparameters utilized in the ML(ET) model using the selected  $\{E\}$  features for MAX(D<sub>T</sub>, D<sub>O</sub>) regression. (b) Hyperparameter importance plot for ML(Extra Trees Regressor) model, (c) Slice plots for bootstrap, max\_depth, max\_features, min\_samples\_leaf, min\_samples\_split, and n\_estimators hyperparameters for the ML(Extra Trees Regressor) model. The legend bar shows number of trials.

| Structure                        | E <sub>hull</sub> (eV) | $MAX(D_T, D_O)$ (eV) |
|----------------------------------|------------------------|----------------------|
| CdSc <sub>2</sub> O <sub>4</sub> | 0.038                  | 3.408                |
| $CdRh_2O_4$                      | 0.030                  | 2.830                |
| $ZnAl_2O_4$                      | 0.025                  | 3.157                |
| IrLi <sub>2</sub> O <sub>4</sub> | 0.019                  | 2.700                |
| RuNa <sub>2</sub> O <sub>4</sub> | 0.011                  | 2.830                |
| IrRb <sub>2</sub> O <sub>4</sub> | 0                      | 2.838                |
| MoAg <sub>2</sub> O <sub>4</sub> | 0                      | 2.912                |
| MoNa <sub>2</sub> O <sub>4</sub> | 0                      | 2.536                |
| RuLi <sub>2</sub> O <sub>4</sub> | 0                      | 2.713                |
| $TcCs_2O_4$                      | 0                      | 2.973                |
| $TcK_2O_4$                       | 0                      | 3.089                |
| $TcLi_2O_4$                      | 0                      | 2.742                |
| TcNa <sub>2</sub> O <sub>4</sub> | 0                      | 3.134                |
| TcRb <sub>2</sub> O <sub>4</sub> | 0                      | 3.060                |

Supplementary Table S6. Predicted 14 stable spinel structures with excellent OER catalytic activity



Supplementary Figure 10. The individual SHAP force plots for (a) MoAg<sub>2</sub>O<sub>4</sub> and (b) MoNa<sub>2</sub>O<sub>4</sub>.



Supplementary Figure 11. HAADF-STEM image and EDS elemental mapping images for (a)  $MoAg_2O_4$  and (b)  $MoNa_2O_4$ .



Supplementary Figure 12. (a)  $N_2$ -sorption isotherms and (b) pore size distribution of  $MoAg_2O_4$  and  $MoNa_2O_4$ .



Supplementary Figure 13. The comparison chart of  $R_{ct}$  and ECSA of MoAg<sub>2</sub>O<sub>4</sub>, MoNa<sub>2</sub>O<sub>4</sub>, ZnAl<sub>2</sub>O<sub>4</sub>, and RuO<sub>2</sub> electrocatalysts, respectively.



Supplementary Figure 14. The LSV curves of  $MoAg_2O_4$  and  $MoNa_2O_4$  samples normalized to (a) catalytic mass, (b) ECSA-, and (c) BET geometric surface area.

# **Supplementary References**

- 1 A. Moez, 2020. https://pycaret.org
- 2 G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54, 11169.
- 3 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
- 4 M. Esmaeilirad, Z. Jiang, A. M. Harzandi, A. Kondori, M. Tamadoni Saray, C. U. Segre, R. Shahbazian-Yassar, A. M. Rappe and M. Asadi, *Nat. Energy*, 2023, **8**, 891–900.
- 5 N. Hamzah, M. H. Samat, N. A. Johari, A. F. A. Faizal, O. H. Hassan, A. M. M. Ali, R. Zakaria, N. H. Hussin, M. Z. A. Yahya and M. F. M. Taib, *Microelectron. Int.*, 2022, **40**, 53–62.
- 6 Bajdich Michal, García-Mota Mónica, Vojvodic Aleksandra, Nørskov Jens K., and Bell Alexis T., J. Am. Chem. Soc., 2013, **135**, 13521–13530.

7 A. Stolyarenko, DATABASE ON PROPERTIES OF CHEMICAL ELEMENTS. A.A.BAIKOV INSTITUTE OF METALLURGY AND MATERIALS SCIENCE (2020).