SERS Hotspot Engineering Using External Field Assembly of Plasmonic Magnetic Nanocomposite with High Sensitive and UniformityZhenli Sun ${ }^{\text {a }}$, Ning Wang ${ }^{\text {a }}$, Yiyan Zhang ${ }^{\text {a }}$, Xunlong Ji ${ }^{\text {a }}$, Zijin Hong ${ }^{\text {a }}$, Dan Xie ${ }^{\text {a }}$, Wentao Zhang ${ }^{\text {a }}$, Wenjing Liu ${ }^{\text {b }}$, Jingjing $\mathrm{Du}^{\mathrm{c}, \mathrm{d}^{*}}$
${ }^{\text {a }}$ MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
${ }^{\mathrm{b}}$ Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
c State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
${ }^{d}$ University of Chinese Academy of Sciences, Beijing, China

4-MPY Density calculations:

1 Calculation of hot spot density
(1) There are $30 \mathrm{mg} \mathrm{Fe} \mathrm{O}_{3} \mathrm{O}_{4} @ \mathrm{SiO}_{2}$ (FS) nanoparticle in 3 mL water, the number of FS was

$$
\begin{aligned}
& N_{F S}=\frac{m_{F S}}{M_{F S}}=\frac{30 \times 10^{-3}}{2.2 \times \frac{4 \pi}{3}\left(\left(153 \times 10^{-7}\right)^{3}-\left(150 \times 10^{-7}\right)^{3}\right)+5.18 \times \frac{4 \pi}{3}\left(150 \times 10^{-7}\right)^{3}} \\
& =4.0 \times 10^{11}
\end{aligned}
$$

(2) Take 0.5 mL of FS substrate, remove the supernatant, and add 0.25 mL of deionized water, the amount of FS

$$
N_{F S^{\prime}}=\frac{0.5}{3.0} \times N_{F S}=\frac{0.5}{3.0} \times 4.0 \times 10^{11}=6.7 \times 10^{10}
$$

(3) The number of $4 \mu \mathrm{~L}$ substrate nanoparticle used for SERS detection was

$$
N_{F S 0}=6.67 \times 10^{10} \times \frac{4 \times 10^{-3}}{3}=8.9 \times 10^{7}
$$

(4) The distribution area of FA particles was $8.66 \mathrm{~mm}^{2}$ (Figure S 2 a) before enrichment of the substrate with the magnet and $1.34 \mathrm{~mm}^{2}$ (Figure S 2 g) in the
presence of the magnet, respectively, and thus the density of FA particles before and after enrichment was

Before enrichment: $D_{F S 1}=\frac{8.9 \times 10^{7}}{8.66}=1.0 \times 10^{7} \mathrm{per} \mathrm{mm}{ }^{2}$
After enrichment: ${ }^{D_{F S 2}}=\frac{8.9 \times 10^{7}}{1.34}=6.6 \times 10^{7}$ per mm ${ }^{2}$
(5) Calculation of FA particle gap before and after enrichment (gap)

Before enrichment: $G_{F A 1}=\frac{1}{\sqrt{1.0 \times 10^{7}}}=0.31 \mu \mathrm{~m}$
After enrichment: $G_{F A 2}=\frac{1}{\sqrt{6.6 \times 10^{7}}}=0.12 \mu \mathrm{~m}$
(6) Calculation of density of hot spots before and after enrichment (density of hot spots, D_{HS})

Before enrichment:

$$
D_{H S 1}=2 \times \sqrt{1.0 \times 10^{7}} \times\left(\sqrt{1.0 \times 10^{7}}+1\right)=2.1 \times 10^{7} \text { per mm }^{2}
$$

After enrichment:

$$
D_{H S 2}=2 \times \sqrt{6.6 \times 10^{7}} \times\left(\sqrt{6.6 \times 10^{7}}+1\right)=1.3 \times 10^{8} \text { per mm }^{2}
$$

2 Calculation of Density calculation for FA surface 4MPY
(1) Based on the results of the SERS detection (Figure S 1), the amount of 4MPY adsorbed on the $4 \mu \mathrm{~L}$ FA substrate was $N_{A M}=C_{4 M P Y} \times V_{4 M P Y}=(10.0-0.15) \times 10^{-6} \times 1 \times 10^{-3} \times 6.02 \times 10^{23}=5.93 \times 10^{15}$
(2) The number of 4MPY on each FA particle is:
$N_{4 M P Y 0}=\frac{5.93 \times 10^{15}}{8.9 \times 10^{7}}=6.7 \times 10^{7}$
(3) Before and after enrichment, the density of AM distribution was (density of $\mathrm{AM}, \mathrm{D}_{\mathrm{AM}}$)

Before enrichment:

$$
D_{4 M P Y 1}=6.7 \times 10^{7} \times 1.0 \times 10^{7}=6.9 \times 10^{14} \mathrm{per} \mathrm{~mm}{ }^{2}
$$

After enrichment:

$$
D_{4 M P Y 2}=6.7 \times 10^{7} \times 6.6 \times 10^{7}=4.5 \times 10^{15} \mathrm{per} \mathrm{~mm}{ }^{2}
$$

(4) Per FA surface, 4 MPY density distribution was

Based on previously studies, the spacing of gold nanoparticles on the FA surface is 7 nm , so the number of gold nanoparticles per FA surface was
$N_{A u}=\frac{4 \pi \times\left(R+r+\frac{\text { space }}{2}\right)^{2}}{\pi \times\left(r+\frac{\text { space }}{2}\right)^{2}}=\frac{4 \pi \times\left(155+10+\frac{7}{2}\right)^{2}}{\pi \times\left(10+\frac{7}{2}\right)^{2}}=587$
The surface area of per FA particle was
$S_{F A}=S_{F A}+S_{A u} \times N_{A u}=4 \pi R^{2}+4 \pi r^{2} \times 587=4 \pi 155^{2}+4 \pi 10^{2} \times 587=1.08 \times 10^{6}$
The density distribution of 4MPY on the FA surface was
$D_{A M 3}=\frac{N_{4 M P Y 0}}{S_{F A}}=\frac{6.7 \times 10^{7}}{1.08 \times 10^{6}}=62 \mathrm{per} \mathrm{nm}^{2}$

Figure S 1 (a)Signal intensity plots of Raman spectra of 4MPY at different dilutions (b) The calibration curve of 4MPY (the inserted red-purple point was 4MPY concentration after FA absorption.).

Figure S 2 White light map of magnetic FA particle distribution after enrichment with different magnets.
Table S 1 Effect of different magnet sizes on the substrate

Sample	Magnetic fields (mT)	Diameter of magnet (mm)	Thickness of magnet (mm)	Area $\left(\mathrm{mm}^{2}\right)$	GAP $(\mu \mathrm{m})$	density of hot spots $($ per $\left.\mathrm{mm}^{2}\right)$	density of AM (per $\mathrm{mm})$
a	0	0	0	8.66	0.31	$2.1 \mathrm{E}+07$	$6.9 \mathrm{E}+14$
b	22	1	1	5.68	0.25	$3.1 \mathrm{E}+07$	$1.0 \mathrm{E}+15$
c	26	1	2	2.39	0.16	$7.4 \mathrm{E}+07$	$2.5 \mathrm{E}+15$
d	67	2	1	3.17	0.19	$5.6 \mathrm{E}+07$	$1.9 \mathrm{E}+15$
e	87	2	2	2.83	0.18	$6.3 \mathrm{E}+07$	$2.1 \mathrm{E}+15$
f	96	3	1	1.07	0.11	$1.7 \mathrm{E}+08$	$5.6 \mathrm{E}+15$
g	103	3	2	1.34	0.12	$1.3 \mathrm{E}+08$	$4.5 \mathrm{E}+15$
h	126	3	3	2.20	0.16	$8.1 \mathrm{E}+07$	$2.7 \mathrm{E}+15$
i	138	3	4	1.64	0.14	$1.1 \mathrm{E}+08$	$3.6 \mathrm{E}+15$
j	143	3	5	2.30	0.16	$7.7 \mathrm{E}+07$	$2.6 \mathrm{E}+15$
k	144	3	6	1.84	0.14	$9.7 \mathrm{E}+07$	$3.2 \mathrm{E}+15$
1	113	4	1	2.56	0.17	$7.0 \mathrm{E}+07$	$2.3 \mathrm{E}+15$
m	170	4	2	1.58	0.13	$1.1 \mathrm{E}+08$	$3.8 \mathrm{E}+15$
n	102	5	1	1.66	0.14	$1.1 \mathrm{E}+08$	$3.6 \mathrm{E}+15$
o	187	5	2	1.00	0.11	$1.8 \mathrm{E}+08$	$6.0 \mathrm{E}+15$
p	185	7	2	2.27	0.16	$7.8 \mathrm{E}+07$	$2.6 \mathrm{E}+15$

