SERS Hotspot Engineering Using External Field Assembly of Plasmonic Magnetic Nanocomposite with High Sensitive and UniformityZhenli Sun^a, Ning Wang^a, Yiyan Zhang^a, Xunlong Ji ^a, Zijin Hong^a, Dan Xie^a, Wentao Zhang^a, Wenjing Liu^b, Jingjing Du^{c,d*}

- ^a MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
- ^b Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- ^c State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- ^d University of Chinese Academy of Sciences, Beijing, China

4-MPY Density calculations:

- 1 Calculation of hot spot density
- ① There are 30 mg $Fe_3O_4@SiO_2$ (FS) nanoparticle in 3 mL water, the number of FS was

$$N_{FS} = \frac{m_{FS}}{M_{FS}} = \frac{30 \times 10^{-3}}{2.2 \times \frac{4\pi}{3} ((153 \times 10^{-7})^3 - (150 \times 10^{-7})^3) + 5.18 \times \frac{4\pi}{3} (150 \times 10^{-7})^3}$$

$$=4.0\times10^{11}$$

② Take 0.5 mL of FS substrate, remove the supernatant, and add 0.25 mL of deionized water, the amount of FS

$$N_{FS} = \frac{0.5}{3.0} \times N_{FS} = \frac{0.5}{3.0} \times 4.0 \times 10^{11} = 6.7 \times 10^{10}$$

3 The number of 4 µL substrate nanoparticle used for SERS detection was

$$N_{FS0} = 6.67 \times 10^{10} \times \frac{4 \times 10^{-3}}{3} = 8.9 \times 10^{7}$$

④ The distribution area of FA particles was 8.66 mm² (Figure S 2a) before enrichment of the substrate with the magnet and 1.34 mm² (Figure S 2g) in the

presence of the magnet, respectively, and thus the density of FA particles before and after enrichment was

Before enrichment:
$$D_{FS1} = \frac{8.9 \times 10^7}{8.66} = 1.0 \times 10^7 \ per \ mm^2$$

After enrichment:
$$D_{FS2} = \frac{8.9 \times 10^7}{1.34} = 6.6 \times 10^7 per mm^2$$

⑤ Calculation of FA particle gap before and after enrichment (gap)

Before enrichment:
$$G_{FA1} = \frac{1}{\sqrt{1.0 \times 10^7}} = 0.31 \,\mu m$$

After enrichment:
$$G_{FA2} = \frac{1}{\sqrt{6.6 \times 10^7}} = 0.12 \ \mu m$$

6 Calculation of density of hot spots before and after enrichment (density of hot spots, D_{HS})

Before enrichment:

$$D_{HS1} = 2 \times \sqrt{1.0 \times 10^7} \times (\sqrt{1.0 \times 10^7} + 1) = 2.1 \times 10^7 \ per \ mm^2$$

After enrichment:

$$D_{HS2} = 2 \times \sqrt{6.6 \times 10^7} \times (\sqrt{6.6 \times 10^7} + 1) = 1.3 \times 10^8 \, per \, mm^2$$

- 2 Calculation of Density calculation for FA surface 4MPY
- \odot Based on the results of the SERS detection (Figure S 1), the amount of 4MPY adsorbed on the 4 μL FA substrate was

$$N_{AM} = C_{4MPY} \times V_{4MPY} = (10.0 - 0.15) \times 10^{-6} \times 1 \times 10^{-3} \times 6.02 \times 10^{23} = 5.93 \times 10^{15}$$

② The number of 4MPY on each FA particle is:

$$N_{4MPY0} = \frac{5.93 \times 10^{15}}{8.9 \times 10^7} = 6.7 \times 10^7$$

3 Before and after enrichment, the density of AM distribution was 4 density of AM, D_{AM}

Before enrichment:

$$D_{4MPY1} = 6.7 \times 10^7 \times 1.0 \times 10^7 = 6.9 \times 10^{14} \, per \, mm^2$$

After enrichment:

$$D_{4MPY2} = 6.7 \times 10^7 \times 6.6 \times 10^7 = 4.5 \times 10^{15} \, per \, mm^2$$

4 Per FA surface, 4 MPY density distribution was

Based on previously studies, the spacing of gold nanoparticles on the FA surface is 7 nm, so the number of gold nanoparticles per FA surface was

$$N_{Au} = \frac{4\pi \times \left(R + r + \frac{space}{2}\right)^2}{\pi \times \left(r + \frac{space}{2}\right)^2} = \frac{4\pi \times \left(155 + 10 + \frac{7}{2}\right)^2}{\pi \times \left(10 + \frac{7}{2}\right)^2} = 587$$

The surface area of per FA particle was

$$S_{FA} = S_{FA} + S_{Au} \times N_{Au} = 4\pi R^2 + 4\pi r^2 \times 587 = 4\pi 155^2 + 4\pi 10^2 \times 587 = 1.08 \times 10^6$$

The density distribution of 4MPY on the FA surface was

Figure S 1 (a)Signal intensity plots of Raman spectra of 4MPY at different dilutions (b) The calibration curve of 4MPY (the inserted red-purple point was 4MPY concentration after FA absorption.).

Figure S 2 White light map of magnetic FA particle distribution after enrichment with different magnets.

Table S 1 Effect of different magnet sizes on the substrate

Sample	Magnetic fields (mT)	Diameter of magnet (mm)	Thickness of magnet (mm)	Area (mm²)	GAP (μm)	density of hot spots (per mm ²)	density of AM (per mm²)
a	0	0	0	8.66	0.31	2.1E+07	6.9E+14
b	22	1	1	5.68	0.25	3.1E+07	1.0E+15
c	26	1	2	2.39	0.16	7.4E+07	2.5E+15
d	67	2	1	3.17	0.19	5.6E+07	1.9E+15
e	87	2	2	2.83	0.18	6.3E+07	2.1E+15
\mathbf{f}	96	3	1	1.07	0.11	1.7E + 08	5.6E+15
g	103	3	2	1.34	0.12	1.3E+08	4.5E+15
h	126	3	3	2.20	0.16	8.1E+07	2.7E+15
i	138	3	4	1.64	0.14	1.1E+08	3.6E+15
j	143	3	5	2.30	0.16	7.7E+07	2.6E+15
k	144	3	6	1.84	0.14	9.7E+07	3.2E+15
1	113	4	1	2.56	0.17	7.0E+07	2.3E+15
m	170	4	2	1.58	0.13	1.1E+08	3.8E+15
n	102	5	1	1.66	0.14	1.1E+08	3.6E+15
o	187	5	2	1.00	0.11	1.8E+08	6.0E+15
p	185	7	2	2.27	0.16	7.8E+07	2.6E+15