Supplementary information

for

Interface-engineered hybrid electrocatalysts of Ti@holey-TiN/layered-doublehydroxides for efficient seawater electrolysis

Woosik Yoon, a,‡ Yeon Hu Park, a,‡ Xiaoyan Jin, b,* and Seong-Ju Hwang a,*

^a Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.

^b Department of Applied Chemistry, College of Natural Sciences, University of Seoul, Seoul 02504, Republic of Korea.

Fig. S1. Powder X-ray diffraction (XRD) patterns of Ti@TiO2 material.

Fig. S2. Powder XRD patterns of Ti@TiN700–900 materials.

Fig. S3. Field emission-scanning electron microscopy (FE-SEM) images of Ti@TiO₂ and Ti@TiN700–900 materials.

Fig. S4. FE-SEM images of Ti@TiN/LDH700 and Ti@TiN/LDH800 materials.

Fig. S5. (a) Ti 2p X-ray photoelectron spectroscopy (XPS) data and (b) N 1s XPS data of Ti@TiN700–900 materials.

Fig. S6. (a) Overlapped XPS data of deconvoluted Ni 2p peaks and (b) Fe 2p peaks of Ti@LDH and Ti@TiN700–900 materials.

Fig. S7. Linear sweep voltammetry (LSV) data of Ti@TiN/LDH900 and Ti@RuO₂.

Fig. S8. LSV data of Ti@TiN/LDH900 measured using the SCE and Hg/HgO reference electrodes.

Fig. S9. LSV data of Ti@TiN/LDH900 without and with *iR* correction.

Fig. S10. LSV data of Ti@TiN/LDH900 and Ti@TiN/LDH1000 (synthesis of Ti@TiN/LDH at 1000 °C).

Fig. S11. LSV data of Ti@TiN/LDH900 nanohybrids with different TiN/LDH ratios (x:y).

Fig. S12. Cyclic voltammetry (CV) curves of Ti@TiN/LDH700–900 materials measured at various scan rates.

Fig. S13. Durability data of Ti@TiN/LDH900, Ti@TiN/LDH800 and Ti@TiN/LDH700 measured at 1 M KOH, simulated seawater and real seawater electrolytes.

Fig. S14. (a) Powder XRD and (b) FE-SEM data of Ti@TiN/LDH900 before and after stability test.

Fig. S15. (a) LSV of OER, and (b) overpotentials of Ti@TiN/LDH700, Ti@TiN/LDH800 and Ti@TiN/LDH900 measured at seawater electrolyte.

Table S1. Energy dispersive spectroscopy (EDS) data of Ti@TiN/LDH900 nanohybrids with different TiN/LDH ratios.

	molar ratio	
Material	(Ni-Fe-LDH/TiN)	
Ti@TiN/LDH900	2.03/1	

Material	Ni ²⁺ /Ni ³⁺	Fe^{2+}/Fe^{3+}
Ti@LDH	2.442	0.569
Ti@TiN/LDH700	2.720	0.613
Ti@TiN/LDH800	2.954	0.665
Ti@TiN/LDH900	3.066	0.681

Material	Bonding pair	Coordination number	Bond distance (Å)	ΔE (eV)	$\sigma^2({\rm \AA}^2)$
Ti@TiN/LDH700	Ni–O	6	2.038	2.51	0.0039
	Fe–O	6	1.973	0.94	0.0053
Ti@TiN/LDH800	Ni–O	6	2.039	2.43	0.0040
	Fe–O	6	1.975	0.10	0.0043
Ti@TiN/LDH900	Ni–O	6	2.040	1.77	0.0044
	Fe–O	6	1.984	1.03	0.0083
Ni–Fe-LDH	Ni–O	6	2.023	-3.64	0.0058
	Fe–O	6	1.968	-5.14	0.0079

Table S3. Results of non-linear least-squares Ni/Fe K-edge EXAFS fitting analysis.

Catalyst	Support	Electrolyte	Overpotential @ 100 mV @ mA cm ⁻²	Reference	
Ti@TiN/NiFe LDH	Ti foam	1 M KOH 1 M KOH + Seawater	240 268	This Work	
NiFe LDH@ FeNi ₂ S4	Ni foam	1 M KOH 1 M KOH + Seawater	240 271	Adv. Funct. Mater., 2022,	
N-CDs/NiFe	Ni foam	1 M KOH 1 M KOH + Seawater	260 340	<i>S2</i> , 2200951 <i>Nano Res.</i> , 2022, 15 ,	
BZ-NiFe LDH	Carbon	1 M KOH - Segurator	230	7063–7070 Nano Res. Energy, 2022,	
CoP _x @FeOOH	Ni foam	1 M KOH + Seawater	254	1 , 9120028 <i>Appl. Catal.,</i> <i>B</i> , 2021, 294 ,	
NiCoS	Ni foam	1 M KOH + Seawater	283 270 360	120256 Appl. Catal., B, 2021, 291 ,	
Mo-Ni ₃ S ₂	Ni foam	1 M KOH 1 M KOH + Seawater	280 291	<i>Energy Fuels,</i> 2022, 36 , 2910–2917	
Ni ₃ S ₂ @Fe-NiP _x	Ni foam	1 M KOH 1 M KOH + Seawater	240 290	<i>Adv. Sci.,</i> 2022, 9 , 2104846	
Ni ₂ P-Fe ₂ P	Ni foam	1 M KOH 1 M KOH + Seawater	261 305	Adv. Funct. Mater., 2021, 31 , 2006484	
S,P-(Ni,Mo,Fe) NiMoP	Wood aerogel	1 M KOH 1 M KOH + Seawater	279 286	<i>Appl. Catal.,</i> <i>B</i> , 2021, 293 , 120215	
1D-Cu@Co- CoO/Rh	Cu foam	1 M KOH 1 M KOH + Seawater	380 400	<i>Small</i> , 2021, 17 , 2103826	

Table S4. Comparison of OER activity for Ti@TiN/LDH in 1 M KOH and real seawater electrolytes with recently reported OER electrocatalysts.

Material	$R_{ct}(\Omega)$
Ti@TiN	36.7
Ti@LDH	152.6
Ti@TiN/LDH700	2.5
Ti@TiN/LDH800	2.3
Ti@TiN/LDH900	1.5

Table S5. Charge transfer resistance (R_{ct}) values calculated from electrochemical impedance spectroscopy (EIS) fitting analysis.