Supplementary Information

Facile and Scalable Fabrication of Flexible Micro-supercapacitor with High Volumetric Performance Based on Ultrathin Co(OH)₂ Nanosheets

Pallavi Bhaktapralhad Jagdale,^a Sayali Ashok Patil,^a Mansi Pathak,^aPrangya Bhol,^aAmanda Sfeir,^b Sébastien Royer,^b Akshaya Kumar Samal,^a Chandra sekhar Rout, ^a Manav Saxena ^{a*}

^a Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global

Campus, Ramanagara, Bangalore 562112, India

^b Université de Lille, CNRS, Centrale Lille, Université Artois, UMR 8181-UCCS-12 Unité de Catalyse et Chimie du Solide, Lille 59000, France

E-mail: s.manav@jainuniversity.ac.in, manavsaxena19@gmail.com

Experimental section

Preparation of PVA/KOH gel electrolyte:

2.5 g of polyvinyl alcohol (PVA) was first dissolved in 25 ml of distilled water under constant stirring at 60°C until a transparent and clear solution formed. Next, 2 M of KOH was added dropwise into the PVA polymer solution under continuous stirring. This solution was stirred at room temperature to get a homogeneous and viscous gel electrolyte.

Fig. S1. FESEM images of CN-LSG MSC: (a) Low-magnification (b) Cross-sectional FESEM image showing uniform coverage of $Co(OH)_2$ NS on LSG (c) EDS spectrum, inset: EDS showing the presence of Co and FESEM image of $Co(OH)_2$ NS on LSG (d-g) elemental mapping showing uniform distribution of elements. Scale bar: (a) 100 µm, (b) 10 µm, (c-g) 200 µm.

Fig. S2. XRD pattern of Co(OH)₂ nanosheet.

Fig. S3. (a) XRD and (b) Raman spectrum of laser-scribed graphene (LSG)

Fig. S4. XPS Survey spectrum of $Co(OH)_2$ nanosheet.

Fig. S5. (a) XPS spectrum of C1s of LSG

Fig. S6. Tensile stress-strain curve of LSG and Co(OH)₂/LSG

Fig. S7. Plot of the anodic (I_a) and cathodic (I_c) peak currents vs square root of scan rates.

Fig. S8. Electrochemical performance of CN-LSG MSC and LSG MSC (a) CV at a scan rate of 100 mV s⁻¹, and (b) GCD at the current density of 13 A cm⁻³.

Fig. S9. Nyquist plot of CN-LSG MSC. Inset is a zoomed image showing an R_{ct} value of 12.2 Ω .

Fig. S10. Self-discharge characteristic of CN-LSG MSC: Voltage versus time after charging MSC at a constant current density of 13 A cm⁻³ up to a potential of 0.8 V.

Electrode	Maximum	Ultimate Stress	Displacement at	Tensile Strength	
	Load (N)	(MPa-N/mm ²)	Maximum Load	(MPa)	
			(mm)		
Co(OH) ₂ NS /LSG	21.125	6.392	0.51	6.401	
LSG	12.625	4.876	0.57	4.874	

Table S1: Mechanical properties of LSG and $Co(OH)_2$ NS /LSG electrodes.

Table S2: Comparison of performance of CN-LSG MSC with recently reported MSCs.

	C _{Vol}	Energy density	Cyclic stability (%) / cycles	Reference
Material	(F cm ⁻³)	(mWh cm ⁻³)		
PPY-hs@CoS	-	25.6	86/5,000	1
S-doped CoZnNi-OH/CuCoP/CW	290	9.73	93/5,000	2
Graphene/Co(OH) ₂ /Ni	21	18.6	94/10,000	3
Co-Ni/rGO	3.85	0.63	90/3,000	4
αCo(OH) ₂ /rGO	130	20	99/2000	5
Co(OH) ₂	39.7	12.4	84/10,000	6
Co(OH) ₂ /rGO	54	6	77/5,000	7
CuO@CoFe LDH	-	1.85	99/2,000	8
CN-LSG	258	22	96/20,000	This work

References

- 1. Y. Zhao, J. Zheng, J. Yang, W. Liu, F. Qiao, J. Lian, G. Li, T. Wang, J. Zhang and L. Wu, *Nano Research*, 2023, **16**, 555-563.
- 2. L. Naderi and S. Shahrokhian, *Chem. Eng. J.*, 2023, **476**, 146764.
- 3. Z. Zhang, Q. Xia, Y. Chen, X. Pan, E. Pameté, Y. Zhang, V. Presser, Q. Abbas and X. Chen, *Electrochim. Acta*, 2022, **433**, 141247.
- 4. J. Jung, J. R. Jeong, C. Dang Van, K. Kang and M. H. Lee, *ACS Appl. Electronic. Mater.*, 2022, **4**, 4840-4848.
- 5. Y. Rong, Y. Chen, J. Zheng, Y. Zhao and Q. Li, J. Colloid Interface Sci., 2021, **598**, 1-13.
- 6. S. Wang, Z.-S. Wu, F. Zhou, X. Shi, S. Zheng, J. Qin, H. Xiao, C. Sun and X. Bao, *npj 2D Mater. Appl.*, 2018, **2**, 7.
- 7. N. Kurra, Q. Jiang and H. N. Alshareef, *Nano Energy*, 2015, **16**, 1-9.
- 8. Z. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang, J. Han, M. Wei, D. G. Evans and X. Duan, *Nano Energy*, 2016, **20**, 294-304.