Electronic Supplementary Information

Understanding water-gas shift reaction mechanisms at palladium-ceria interfaces using in-situ SERS coupled with online mass spectrometry

Di-Ye Wei,^a Ge Zhang,^a Hong-Jia Wang,^a Qing-Na Zheng,^a Jing-Hua Tian,^b Hua Zhang^{*a} and Jian-Feng Li^{*a, b, c}

^aCollege of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen, 361005, China.

^bInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China.

^cCollege of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China.

*Corresponding Authors, E-mail: Li@xmu.edu.cn, zhanghua@xmu.edu.cn

Additional Experimental Procedures

The Raman experiments were done on EC-Raman (Xiamen SHINs Technology Co., Ltd.) or a Jobin-Yvon Horiba XplorA confocal Raman system. An excitation laser with a wavelength of 638 nm and a 50× microscope objective with a numerical aperture of 0.55 were used. The laser power was ~0.03 mW, and the spectral resolution was 2 cm⁻¹. Approximately 5 μ L Au@Pd or Au@CeO₂-Pd core-shell nanoparticles were concentrated and deposited on a clean silicon surface, dried at room temperature for insitu experiment. The sample was placed in a home-made Raman cell with atmosphere and temperature controlled to allow the reactant gas flow over the sample surface. Before the Raman measurement, the sample was pre-treated under H₂ at 20 °C for 30 min. The gas coming out of the in-situ Raman cell through a partial split and enters the mass spectrometer for online analysis.

The X-ray photoelectron spectroscopy (XPS) data was collected on Escalab Xi+ from Thermo Fisher. The charging effect was corrected by adjusting the binding energy of C 1s to 284.6 eV. XPS analysis of Pd 3d core-level spectra of Au@Pd and Au@CeO₂-Pd were conducted. The spin-orbit splitting is fixed at ~5.25 eV, and the peak area ratio of $3d_{5/2}$ and $3d_{3/2}$ is 3:2. The corresponding peak area and positions of Pd 3d are shown in Tables S1-S3. XPS analysis of Ce 3d core-level spectra of Au@CeO₂-Pd was as followed: The spin-orbit splitting is fixed at ~18.6 eV. The corresponding peak area and positions of Ce³⁺and Ce⁴⁺ are shown in Tables S4-S6. The concentration of Ce³⁺ can be calculated by the equation: Ce³⁺= (v₀+ v'+ u₀+ u') / (v+ v"+ v"+ u+ u'+ u"+v₀+ v'+ u₀+ u')¹⁻³.

	0 1		0
	Assignment	Pd^0	Pd^{2+}
D4 24	Binding energy/ eV	334.7	336.8
Pd 3d _{3/2}	Area	60360	14490
Pd 3d _{5/2}	Binding energy/ eV	339.9	342.0
	Area	40240	9660

Table S1. Assignment of Pd 3d peaks in XPS over Au@Pd

Table S2. Assignment of Pd 3d peaks in XPS over Au@CeO₂-Pd

	Assignment	Pd^0	Pd^{2+}
D121	Binding energy/ eV	334.7	337.0
Pu 3u _{3/2}	Area	71861	20621
Pd 3d _{5/2}	Binding energy/ eV	340.0	342.3
	Area	47907	13747

Table S3. Assignment of Pd 3d peaks in XPS over Au@CeO2-Pd after WGSR

	Assignment	Pd^0	Pd^{2+}
D121	Binding energy/ eV	334.9	338.3
Pu $3u_{3/2}$	Area	17003.1	1022.8
Pd 3d _{5/2}	Binding energy/ eV	340.2	343.6
	Area	11335.4	681.9

Table S4. Assignment of Ce 3d peaks in XPS over Au@CeO₂

	-		-			
		v ₀	V	\mathbf{V}^{\prime}	\mathbf{v} "	v '''
	Origin	Ce ³⁺	Ce ⁴⁺	Ce ³⁺	Ce ⁴⁺	Ce ⁴⁺
Ce 3d _{3/2}	Binding energy /eV	881.0	882.9	885.5	888.2	898.8
	Area	449.9	4638.4	2874.1	3563.9	3100.4
		u ₀	u	u'	u"	u'''
	Origin	Ce ³⁺	Ce ⁴⁺	Ce ³⁺	Ce ⁴⁺	Ce ⁴⁺
Ce 3d _{5/2}	Binding energy /eV	899.6	901.5	904.1	906.8	917.4
	Area	299.9	3092.3	1916.1	2375.9	2066.9

	0		1		0	
		\mathbf{v}_0	V	\mathbf{V}^{\prime}	$\mathbf{v}^{"}$	$\mathbf{V}^{\prime\prime\prime}$
Ce 3d _{3/2}	Origin Binding	Ce ³⁺	Ce ⁴⁺	Ce ³⁺	Ce ⁴⁺	Ce ⁴⁺
	energy /eV	880.3	882.1	884.8	887.5	898.2
	Area	4652.5	24078.3	27742.1	20892.4	21173.5
		u ₀	u	u'	u"	u'''
	Origin	Ce ³⁺	Ce ⁴⁺	Ce ³⁺	Ce ⁴⁺	Ce ⁴⁺
Ce 3d _{5/2}	Binding energy /eV	898.9	900.7	903.4	906.1	916.8
	Area	3101.7	16052.2	18494.7	13928.3	14115.7

Table S5. Assignment of Ce 3d peaks in XPS over Au@CeO₂-Pd

Table S6. Assignment of Ce 3d peaks in XPS over Au@CeO₂-Pd after WGSR.

		\mathbf{v}_0	V	\mathbf{V}^{\prime}	\mathbf{v} "	$\mathbf{v}^{\prime\prime\prime}$
Ce 3d _{3/2}	Origin	Ce^{3+}	Ce ⁴⁺	Ce ³⁺	Ce ⁴⁺	Ce ⁴⁺
	Binding energy /eV	881.3	883.0	885.5	888.7	898.6
	Area	8533.8	55542.4	22114.5	53323.1	68444.9
		u ₀	u	u'	u"	u'''
Ce 3d _{5/2}	Origin	Ce^{3+}	Ce^{4+}	Ce^{3+}	Ce ⁴⁺	Ce ⁴⁺
	Binding energy /eV	899.9	901.6	904.1	907.3	917.2
	Area	5689.2	37028.3	14743.0	35548.7	45629.9

Figure S1. TEM image of Au@CeO₂-Pd NPs.

Figure S2. HR-TEM image of Au@CeO₂-Pd.

Figure S3. XRD pattern of Au, Au@CeO₂ and CeO₂.

Figure S4. Catalytic performance of Au@CeO₂-Pd and Au@Pd. Reaction conditions: 1% CO, 2% H₂O, balance N₂. The weight hourly space velocity is 20,000 mL·g⁻¹·h⁻¹.

Figure S5. Comparison of the SERS spectra of Au@Pd under ¹²CO and ¹³CO.

As shown in Figures 2a and S5, the peak at \sim 364 cm⁻¹ shifts to \sim 353 cm⁻¹ during the ¹³CO exchange experiment, leading to a shift ratio of 97.3% (353/364=97.0%). The theoretical shift ratio of the Pd-C stretch mode of CO adsorbed on Pd can be calculated according to the following equation:

$$=\frac{v(Pd-{}^{13}C)}{v(Pd-{}^{12}C)}=\frac{\sqrt{m(Pd)+m({}^{13}C)}}{\sqrt{m(Pd)*m({}^{13}C)}}/\frac{\sqrt{m(Pd)+m({}^{12}C)}}{\sqrt{m(Pd)*m({}^{12}C)}}=\frac{\sqrt{106+13}}{\sqrt{106*13}}/96.5\%$$

Therefore, it can be confirmed that the band at \sim 364 cm⁻¹ is attributed to the Pd-C band.

As shown in Figures 2a and S2, the band at ~1951 cm⁻¹ redshifts to ~1910 cm⁻¹ in ¹³CO, indicating a shift ratio of ~97.9%. The theoretical shift ratio of the C=O stretch mode according to the following equation is ~97.8%, which confirms the assignment of this band.

$$=\frac{v(0-{}^{13}C)}{v(0-{}^{12}C)}=\frac{\sqrt{m(0)+m({}^{13}C)}}{\sqrt{m(0)*m({}^{13}C)}}/\frac{\sqrt{m(0)+m({}^{12}C)}}{\sqrt{m(0)*m({}^{12}C)}}=\frac{\sqrt{16+13}}{\sqrt{16*13}}/\frac{\sqrt{16}}{\sqrt{16}}$$
%

Figure S6. (a) In-situ SERS spectra of WGSR over Au@Pd switched from CO to H_2O ; (b) The corresponding Raman intensities and MS signals of CO_2 as function of temperature during the in-situ SERS-MS study. The blue line shows the normalized CO Raman intensity, and the red line is the MS signal of CO_2 .

r

r

Figure S7. Comparison of the SERS spectra of $Au@Pd-CeO_2$ under $H_2^{18}O$ and H_2O .

As shown in Figure S7, the peak at ~455 cm⁻¹ shifts to ~435 cm⁻¹ during the $H_2^{18}O$ exchange experiment, leading to a shift ratio of 97.3% (435/455=95.6%). The theoretical shift ratio of the Ce-O stretch mode can be calculated according to the following equation. Therefore, it can be confirmed that this band is attributed to the Ce-O band.

r

$$=\frac{v(Ce^{-18}O)}{v(Ce^{-16}O)}=\frac{\sqrt{m(Ce)+m(^{18}O)}}{\sqrt{m(Ce)*m(^{18}O)}}/\frac{\sqrt{m(Ce)+m(^{16}O)}}{\sqrt{m(Ce)*m(^{16}O)}}=\frac{\sqrt{140+18}}{\sqrt{140*18}}/$$
94.9%

Figure S8. XPS spectra of (a) Pd 3d and (b) Ce 3d in Au@Pd-CeO₂ after WGSR.

References

1. L. Artiglia, F. Orlando, K. Roy, R. Kopelent, O. Safonova, M. Nachtegaal, T. Huthwelker and J. A. van Bokhoven, *J. Phys. Chem. Lett.*, **2017**, *8*, 102-108.

2. X. Ye, H. Wang, Y. Lin, X. Liu, L. Cao, J. Gu and J. Lu, *Nano Res.*, **2019**, *12*, 1401-1409.

3. F. Zhang, P. Wang, J. Koberstein, S. Khalid and S.-W. Chan, Surf. Sci., 2004, 563, 74-82.