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Additional Experimental Procedures

The Raman experiments were done on EC-Raman (Xiamen SHINs Technology 

Co., Ltd.) or a Jobin-Yvon Horiba XplorA confocal Raman system. An excitation laser 

with a wavelength of 638 nm and a 50× microscope objective with a numerical aperture 

of 0.55 were used. The laser power was ~0.03 mW, and the spectral resolution was 2 

cm-1. Approximately 5 μL Au@Pd or Au@CeO2-Pd core-shell nanoparticles were 

concentrated and deposited on a clean silicon surface, dried at room temperature for in-

situ experiment. The sample was placed in a home-made Raman cell with atmosphere 

and temperature controlled to allow the reactant gas flow over the sample surface. 

Before the Raman measurement, the sample was pre-treated under H2 at 20 oC for 30 

min. The gas coming out of the in-situ Raman cell through a partial split and enters the 

mass spectrometer for online analysis.

The X-ray photoelectron spectroscopy (XPS) data was collected on Escalab Xi+ 

from Thermo Fisher. The charging effect was corrected by adjusting the binding energy 

of C 1s to 284.6 eV. XPS analysis of Pd 3d core-level spectra of Au@Pd and 

Au@CeO2-Pd were conducted. The spin-orbit splitting is fixed at ~5.25 eV, and the 

peak area ratio of 3d5/2 and 3d3/2 is 3:2. The corresponding peak area and positions of 

Pd 3d are shown in Tables S1-S3. XPS analysis of Ce 3d core-level spectra of 

Au@CeO2-Pd was as followed: The spin-orbit splitting is fixed at ~18.6 eV. The 

corresponding peak area and positions of Ce3+and Ce4+ are shown in Tables S4-S6. The 

concentration of Ce3+ can be calculated by the equation: Ce3+= (v0+ v'+ u0+ u') / (v+ 

v''+ v'''+ u+ u'+ u'''+v0+ v'+ u0+ u')1-3.



Table S1. Assignment of Pd 3d peaks in XPS over Au@Pd

　 Assignment Pd0 Pd2+ 
Binding energy/ eV 334.7 336.8Pd 3d3/2 Area 60360 14490
Binding energy/ eV 339.9 342.0Pd 3d5/2 Area 40240 9660

Table S2. Assignment of Pd 3d peaks in XPS over Au@CeO2-Pd

　 Assignment Pd0 Pd2+ 
Binding energy/ eV 334.7 337.0Pd 3d3/2 Area 71861 20621
Binding energy/ eV 340.0 342.3Pd 3d5/2 Area 47907 13747

Table S3. Assignment of Pd 3d peaks in XPS over Au@CeO2-Pd after WGSR

　 Assignment Pd0 Pd2+ 
Binding energy/ eV 334.9 338.3Pd 3d3/2 Area 17003.1 1022.8
Binding energy/ eV 340.2 343.6Pd 3d5/2 Area 11335.4 681.9

Table S4. Assignment of Ce 3d peaks in XPS over Au@CeO2

　 　 v0 v v' v'' v'''

Origin Ce3+ Ce4+ Ce3+ Ce4+ Ce4+

Binding 
energy /eV 881.0 882.9 885.5 888.2 898.8

Ce 
3d3/2

Area 449.9 4638.4 2874.1 3563.9 3100.4

　 u0 u u' u'' u'''

Origin Ce3+ Ce4+ Ce3+ Ce4+ Ce4+

Binding 
energy /eV 899.6 901.5 904.1 906.8 917.4

Ce 
3d5/2

Area 299.9 3092.3 1916.1 2375.9 2066.9



Table S5. Assignment of Ce 3d peaks in XPS over Au@CeO2-Pd

　 　 v0 v v' v'' v'''

Origin Ce3+ Ce4+ Ce3+ Ce4+ Ce4+

Binding 
energy 

/eV
880.3 882.1 884.8 887.5 898.2

Ce 
3d3/2

Area 4652.5 24078.3 27742.1 20892.4 21173.5

　 u0 u u' u'' u'''

Origin Ce3+ Ce4+ Ce3+ Ce4+ Ce4+

Binding 
energy 

/eV
898.9 900.7 903.4 906.1 916.8

Ce 
3d5/2

Area 3101.7 16052.2 18494.7 13928.3 14115.7

Table S6. Assignment of Ce 3d peaks in XPS over Au@CeO2-Pd after WGSR.

　 　 v0 v v' v'' v'''

Origin Ce3+ Ce4+ Ce3+ Ce4+ Ce4+

Binding 
energy 

/eV
881.3 883.0 885.5 888.7 898.6

Ce 
3d3/2

Area 8533.8 55542.4 22114.5 53323.1 68444.9

　 u0 u u' u'' u'''

Origin Ce3+ Ce4+ Ce3+ Ce4+ Ce4+

Binding 
energy 

/eV
899.9 901.6 904.1 907.3 917.2

Ce 
3d5/2

Area 5689.2 37028.3 14743.0 35548.7 45629.9



Figure S1. TEM image of Au@CeO2-Pd NPs.

Figure S2. HR-TEM image of Au@CeO2-Pd.

Figure S3. XRD pattern of Au, Au@CeO2 and CeO2.



Figure S4. Catalytic performance of Au@CeO2-Pd and Au@Pd. Reaction conditions: 

1% CO, 2% H2O, balance N2. The weight hourly space velocity is 20,000 mL·g-1·h-1.

Figure S5. Comparison of the SERS spectra of Au@Pd under 12CO and 13CO.

As shown in Figures 2a and S5, the peak at ~364 cm-1 shifts to ~353 cm-1 during 

the 13CO exchange experiment, leading to a shift ratio of 97.3% (353/364=97.0%). The 

theoretical shift ratio of the Pd-C stretch mode of CO adsorbed on Pd can be calculated 

according to the following equation:



𝑟

=
𝑣(𝑃𝑑 ‒ 13𝐶)
𝑣(𝑃𝑑 ‒ 12𝐶)

=
𝑚(𝑃𝑑) +𝑚(13𝐶)
𝑚(𝑃𝑑) ∗ 𝑚(13𝐶)

𝑚(𝑃𝑑) +𝑚(12𝐶)
𝑚(𝑃𝑑) ∗ 𝑚(12𝐶)

=
106 + 13
106 ∗ 13

106 + 12
106 ∗ 12

=

96.5%

  

Therefore, it can be confirmed that the band at ~364 cm-1 is attributed to the Pd-C 

band.

As shown in Figures 2a and S2, the band at ~1951 cm-1 redshifts to ~1910 cm-1 in 
13CO, indicating a shift ratio of ~97.9%. The theoretical shift ratio of the C≡O stretch 

mode according to the following equation is ~97.8%, which confirms the assignment 

of this band.

𝑟

=
𝑣(𝑂 ‒ 13𝐶)
𝑣(𝑂 ‒ 12𝐶)

=
𝑚(𝑂) +𝑚(13𝐶)
𝑚(𝑂) ∗ 𝑚(13𝐶)

𝑚(𝑂) +𝑚(12𝐶)
𝑚(𝑂) ∗ 𝑚(12𝐶)

=
16 + 13
16 ∗ 13

16 + 12
16 ∗ 12

= 97.8

%

 

Figure S6. (a) In-situ SERS spectra of WGSR over Au@Pd switched from CO to H2O; 

(b) The corresponding Raman intensities and MS signals of CO2 as function of 

temperature during the in-situ SERS-MS study. The blue line shows the normalized CO 

Raman intensity, and the red line is the MS signal of CO2.



Figure S7. Comparison of the SERS spectra of Au@Pd-CeO2 under H2
18O and H2O.

As shown in Figure S7, the peak at ~455 cm-1 shifts to ~435 cm-1 during the H2
18O 

exchange experiment, leading to a shift ratio of 97.3% (435/455=95.6%). The 

theoretical shift ratio of the Ce-O stretch mode can be calculated according to the 

following equation. Therefore, it can be confirmed that this band is attributed to the Ce-

O band.

𝑟

=
𝑣(𝐶𝑒 ‒ 18𝑂)
𝑣(𝐶𝑒 ‒ 16𝑂)

=
𝑚(𝐶𝑒) +𝑚(18𝑂)
𝑚(𝐶𝑒) ∗ 𝑚(18𝑂)

𝑚(𝐶𝑒) +𝑚(16𝑂)
𝑚(𝐶𝑒) ∗ 𝑚(16𝑂)

=
140 + 18
140 ∗ 18

140 + 16
140 ∗ 16

=

94.9%

 

Figure S8. XPS spectra of (a) Pd 3d and (b) Ce 3d in Au@Pd-CeO2 after WGSR.
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