Supplementary

Investigating the Nano-Scale Structure and Composition Dynamics During the Phase Transition Towards Complete Separation of CeO₂-ZrO₂ Solid Solution

Seol Hee Oh^{1, §}, Hyun-Kyu Kim^{2, §}, Sun-Young Park^{3, §}, Yeong-Cheol Kim², Deok-Hwang Kwon¹, Sungeun Yang^{1,4}, Ho-Il Ji^{1,4}, Hye Jung Chang¹, Kyung Joong Yoon¹, Ji-Won Son¹ and Jong-Ho Lee^{1,4}*

¹Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 02792,

Korea

²School of Energy Materials and Chemical Engineering, Korea University of Technology and Education, Cheonan 31253, Korea

³Technology Support Center, Korea Institute of Science and Technology, Seoul 02792, Korea

⁴Division of Nanoscience & Technology, University of Science and Technology, Seoul

02792, Korea

*E-mail of the Corresponding Author: jongho@kist.re.kr

Figure S1. (a) Out-of-plane and (b) in-plane X-ray diffraction patterns of the epitaxially grown CZO thin films on YSZ (100) substrates.

Figure S2. XRD spectra of the CZO thin film exposed to a reducing atmosphere at 1000°C

As illustrated in Figure S1, the original diffraction peak of the CZO thin film decreased significantly after heat treatment at 1000°C in a reducing atmosphere, with peaks for Ce oxide and Zr oxide appearing. This phase evolution was more pronounced in very thin films (~25 nm thick), where the CZO peak nearly vanished, leaving predominantly separated phases.

Figure S3. Observation of the completely decomposed phases in the high magnification (a) STEM image and (b-d) corresponding elemental mapping images at the surface of thin film reduced for 120 hr.