Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Two-dimensional azulenoid kekulenes based metallic allotropes for energy storage applications

Umer Younis^{a*}, Fizzah Qayyum^c, Waqas Ahmad^a, Arzoo Hassan^d, Nisha Singh^a, Muhammad

Yaseen^e, Yanning Zhang^{a*} and Zhiming Wang^{a,b*}

^a Institute of Fundamental and Frontier Sciences, University of Electronic Science and

Technology of China, Chengdu 610054, China.

^b Institute for Advanced Study, Chengdu University, Chengdu 610106, P.R. China

^c National Centre for Nanoscience and Technology (NCNST) Beiyitiao Zhongguancun, Beijing

100190, China.

^dCollege of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060,

China.

^e Department of Physics University of Agriculture Faisalabad 38000 Pakistan.

*<u>umer.younas@pku.edu.cn</u>

*yanningz@uestc.edu.cn

*zhmwang@uestc.edu.cn

Figure. S1 Top and side view of fully relaxed geometry of AA-stacking for metallic (a) AKC-5,0 and (b) AKC-3,2 carbon allotropes.

Figure. S2 The crystal orbital Hamilton population (COHP) analysis for metallic (a) AKC-5,0 and (b) AKC-3,2 carbon allotropes.

Figure. S3 The partial density of states at the first two adsorption sites for metallic (a-b) AKC-5,0 and (c-d) AKC-3,2 carbon allotropes.

Figure. S4 Results for charge density difference at the second most stable adsorption site of metallic (a) AKC-5,0 and (b) AKC-3,2 allotropes for sodium ion. The green and blue boxes represent the charge sufficient and charge deficient.

Figure. S5 The two different diffusion pathways for sodium ions over (a-b) bilayer AKC-5,0 and bilayer AKC-3,2 allotropes and (c-d) their respective diffusion profiles.

Figure. S6 Top and side view of fully sodiated metallic (a) AKC-5,0 and (b) AKC-3,2 carbon allotropes

Figure. S7 The fluctuation in potential energy for the fully sodiated metallic (a) AKC-5,0 and (b) AKC-3,2 allotropes with structural distortion calculated at 300 K.

AKC-3,2			AKC-5,0	
	Path-1	Path-2	Path-1	Path-2
Frequency	117.34 cm-1	78.98 cm-1	40.86 cm-1	53.76 cm-1
Zero point energy	0.0186 eV	0.0140 eV	0.0152 eV	0.0161 eV
<i>Energy contribution</i> <i>at T.S</i>	0.077 eV	0.024 eV	0.0896 eV	0.0882 eV

Table. S1 The vibration frequency, zero point energy and energy contribution of Na-ion at T.S formonolayer AKC-5,0 and AKC-3,2 allotropes.