Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

1 Urea-Nonstoichiometric Co-modulated LaMnO₃ for Ultra-High

2 Gaseous Hg⁰ Uptake Across a Broad Temperature Range

- 3 Runlong Hao^{a,b,1}, Zhen Qian^{a,b,1}, Xiaomeng Zuo^a, Peng Qin^a, Xiaojie Yang^a, Zhao Ma^{a,b}, Bo Yuan^{*,a,b}
- 4 ^a Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science
- 5 and Engineering, North China Electric Power University, Baoding, 071003, PR China.
- 6 ^b MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental
- 7 Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
- 8 * Corresponding authors E-mail: <u>hnyuanbo0407@163.com.</u>
- 9 ¹Co-first author.

10 Text S1. Reagents and Materials

All reagents are of analytical grade, purchased from Macklin and Aladdin Reagent Malls (Shanghai, China). Lanthanum nitrate hexahydrate (La(NO₃)₃·6H₂O, 99%), manganese nitrate solution (Mn(NO₃)₂, 50 wt.%) citric acid (C₆H₈O₇·H₂O, 99.5%) and urea (CH₄N₂O, 99%) are used for the perovskite synthesis. 0.5 mol/L stannous chloride (SnCl₂, 99%) was utilized to confirm whether Hg²⁺ was existed in tail gas. 4 wt% potassium permanganate (KMnO₄, 99%) and 10% v/v sulfuric acid (H₂SO₄, 95-98%) were used to capture the Hg⁰ in tail gas.

18 Fig. S1. XRD patterns of $LaMnO_3$, $La_{0.8}MnO_3$ and $2U-La_{0.8}MnO_3$.

Fig. S2. HRTEM images of 2U-La_{0.8}MnO₃.

- Fig. S3. EDX element mapping images of 2U-La_{0.8}MnO₃.
- 21

23

24 Fig. S4. The nitrogen adsorption-desorption isotherms of LaMnO₃, La_{0.8}MnO₃ and 2U-La_{0.8}MnO₃.

28 Fig. S6. The Hg⁰ removal efficiency of La_{1-x}MnO₃ (x= 0, 0.1, 0.2, 0.3, 0.4), and the inset indicate the

29 dynamic adsorption capacity when the Hg^0 breakthrough reached 5%.

Fig. S7. Influences of (a)NO, (b)SO₂ and (c) H_2O on the Hg^0 removal efficiency.

Fig. S8. The dynamic influence of H_2O on the Hg^0 removal efficiency.

36 Fig. S9. Experimental calculation of Hg⁰ released after reaction for (a) 10, (b) 30 and (c) 60 min.

Fig. S10. The Hg⁰ removal performance with and without SnCl₂ solution.

40 Fig. S11. EDX element mapping images of spent $2U-La_{0.8}MnO_3$.

42 Fig. S12. Calculated side and top view configurations of (a) $LaMnO_3$ and (b) $2U-La_{0.8}MnO_3$.

44 Fig. S13. The configurations of O_2 and Hg^0 on (a) LaMnO₃ and (b) 2U-La_{0.8}MnO₃ (110) surface (*).

Oxides	Temperatur e	Removal efficiency	Hg ⁰ Adsorption capacity (mg/g)	Breakthrough ratio/adsorption time	References
2U-La _{0.8} MnO ₃	$40 \sim 250$	100%	23.86	100%	This work
Mn/y-Fe ₂ O ₃	200	-	3.54	55%	1
$(Fe_2Ti)_{0.8}O_4$	250	-	3.94	23%	2
α -MnO ₂	150	92%	6.94	10 h	3
LaMnO ₃	150	-	7.65	100%	4
CeO ₂ /TiO ₂	200 ~ 250	> 90%	0.012	4 h	5
Fe ₃ O _{4-x} Se _y	100	100%	8.80	100%	6
MoS ₃ /TiO ₂	100	-	14.90	75%	7
La _{0.8} Ce _{0.2} MnO ₃	$50 \sim 200$	> 80%	5.83	30 h	8
Fe ₂ O ₃ /TiO ₂	50~150	> 95%	2.69	10 h	9
CeO ₂ -CrO _x	50~100	100%	0.168	6.7 h	10
α -Fe ₂ O ₃ /SnO ₂	400	99%	4.84	2 h	11
LaFeO ₃	40~160	> 80%	2.397	1 h	12
$Ce-Pd/\gamma-Al_2O_3$	250	> 98%	0.038	4.2 h	13

Table S1. The comparison of the Hg^0 adsorption capacity of $2U-La_{0.8}MnO_3$ with other oxides

46 **References**

- 47 (1) Yang, S.; Guo, Y.; Yan, N.; Qu, Z.; Xie, J.; Yang, C.; Jia, J. Capture of Gaseous Elemental Mercury
 48 from Flue Gas Using a Magnetic and Sulfur Poisoning Resistant Sorbent Mn/γ-Fe₂O₃ at Lower
 49 Temperatures. J. Hazard. Mater. 2011, 186, 508-515.
- 50 (2) Yang, S.; Guo, Y.; Yan, N.; Wu, D.; He, H.; Qu, Z.; Yang, C.; Zhou, Q.; Jia, J. Nanosized Cation-
- 51 deficient Fe-Ti spinel: a Novel Magnetic Sorbent for Elemental Mercury Capture from Flue Gas. *ACS Appl.*52 *Mater. Interfaces.* 2011, *3*, 209-217.
- 53 (3) Xu, H.; Qu, Z.; Zhao, S.; Mei, J.; Quan, F.; Yan, N. Different Crystal-forms of One-dimensional MnO₂
- 54 Nanomaterials for the Catalytic Oxidation and Adsorption of Elemental Mercury. J. Hazard. Mater. 2015,
 55 299, 86-93.
- 56 (4) Xu, H.; Qu, Z.; Zong, C.; Quan, F.; Mei, J.; Yan, N. Catalytic Oxidation and Adsorption of Hg⁰ over
- 57 Low-temperature NH₃-SCR LaMnO₃ Perovskite Oxide from Flue Gas. Appl. Catal., B 2016, 186, 30-40.
- 58 (5) Li, H.; Wu, C.; Li, Y.; Zhang, J. CeO₂-TiO₂ Catalysts for Catalytic Oxidation of Elemental Mercury in
- 59 Low-rank Coal Combustion Flue Gas. Environ. Sci. Technol. 2011, 45, 7394-7400.
- 60 (6) Yang, Z.; Li, H.; Yang, Q.; Qu, W.; Zhao, J.; Feng, Y.; Hu, Y.; Yang, J.; Shih, K. Development of
- 61 Selenized Magnetite (Fe₃O_{4-x}Se_y) as an Efficient and Recyclable Trap for Elemental Mercury Sequestration
- 62 from Coal Combustion Flue Gas. *Chem. Eng. J.* **2020**, *394*, 125022.
- (7) Mei, J.; Wang, C.; Kong, L.; Liu, X.; Hu, Q.; Zhao, H.; Yang, S. Outstanding Performance of Recyclable
 Amorphous MoS₃ Supported on TiO₂ for Capturing High Concentrations of Gaseous Elemental Mercury:
 Mechanism, Kinetics, and Application. *Environ. Sci. Technol.* 2019, *53*, 4480-4489.
- 66 (8) Yang, J.; Na, Y.; Hu, Y.; Zhu, P.; Meng, F.; Guo, Q.; Yang, Z.; Qu, W.; Li, H. Granulation of Mn-based
- 67 Perovskite Adsorbent for Cyclic Hg⁰ Capture from Coal Combustion Flue Gas. *Chem. Eng. J.* **2023**, *459*,
- 68 141679.

- 69 (9) Xing, X.; Zhang, X.; Tang, J.; Cui, L.; Dong, Y. Removal of Gaseous Elemental Mercury from
 70 Simulated Syngas over Fe₂O₃/TiO₂ Sorbents. *Fuel* 2022, *311*, 122614.
- (10) Ye, D.; Wang, X.; Wang, R.; Hu, Y.; Liu, X.; Liu, H. Relationship between Hg⁰ Capture Performance
 and Physicochemical Properties of CeO₂-CrO_x Mixed Oxides. *J. Environ. Chem. Eng.* 2022, *10*, 108252.
- 73 (11) Ma, Y.; Xu, T.; Li, L.; Wang, J.; Li, Y.; Zhang, H. Core-shell Nanostructure α-Fe₂O₃/SnO₂ Binary
- 74 Oxides for the Catalytic Oxidation and Adsorption of Elemental Mercury from Flue Gas. *J. Environ. Chem.*75 *Eng.* 2021, *9*, 105137.
- 76 (12) Pei, H.; Li, X.; Song, Y.; Zhang, M.; Wang, D.; Wu, J.; Wang, F.; Zhang, Y.; Zhao, X.; Jia, T. LaFeO₃
 77 Perovskite Nanoparticles for Efficient Capture of Elemental Mercury from Coal-fired Flue Gas. *Fuel.* 2022,
 78 *309*, 122134.
- 79 (13) Huo, Q.; Yue, C.; Wang, Y.; Han, L.; Wang, J.; Chen, S.; Bao, W.; Chang, L.; Xie, K. Effect of
 80 Impregnation Sequence of Pd/Ce/γ-Al₂O₃ Sorbents on Hg⁰ Removal from Coal Derived Fuel Gas.
 81 *Chemosphere*. 2020, *249*, 126164.