Supplementary Materials

High-Performance Battery-Supercapacitor Hybrid Device

and Electrocatalytic Oxygen Evolution Reaction Based on

NiCo_{2-x}Mn_xO₄@Ni-MOF Ternary Metal Oxide Core-

Shell Structures

Suprimkumar D. Dhas¹, Avinash C. Mendhe¹, Pragati N. Thonge^{1,2}, Amar M. Patil³, Youngsu Kim¹, Daewon Kim^{1*}

¹Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung

Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea

²Department of Botany, Punyashlok Ahilyadevi Holkar, Solapur University, Solapur,

Maharashtra 416 004, India

³Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki

University, Japan

*Corresponding author: **Professor Daewon Kim**

Email address: daewon@khu.ac.kr

Fig. S1: Bar chart of the mass loading of each NiCo_{2-x}Mn_xO₄-based materials

Fig. S2: (a) EDS spectra NiCo_{2-x}Mn_xO₄-1 and corresponding element mapping (b) O, (c) Co,

(d) Ni, (e) Mn.

Fig. S3: (a) EDS spectra Ni-MOF and corresponding element mapping (b) O, (c) Ni, (d) C and (e) HR-TEM images of NiCo_{2-x}Mn_xO₄@Ni-MOF-1 electrode.

Fig. S4: CV curves of (a) NiCo_{2-x}Mn_xO₄-0.5 (c) NiCo_{2-x}Mn_xO₄-1.5 and (d) NiMn₂O₄, electrodes at various scan rate 5-100 mV/s. GCD curves of (e) NiCo₂O₄, (f) NiCo_{2-x}Mn_xO₄-0.5 (g) NiCo_{2-x}Mn_xO₄-1.5 and (h) NiMn₂O₄, electrodes at various current densities. (i) Specific capacitance/capacity vs current densities.

Fig. S5: Capacitive and diffusion-current contributions of (a) $NiCo_2O_4$, (b) $NiCo_{2-x}Mn_xO_4-0.5$ (c) $NiCo_{2-x}Mn_xO_4-1.5$, (d) $NiCo_{2-x}Mn_xO_4-1$, (d) $NiMn_2O_4$ and (f) pristine Ni-MOF electrodes at various scan rates.

Fig. S6: The b-value determination of the peak anodic currents of $NiCo_{2-x}Mn_xO_4$ -based electrodes.

Fig. S7: The equivalent circuit fitted with (a) $NiCo_{2-x}Mn_xO_4$ -1, $NiCo_{2-x}Mn_xO_4$ -0.5 and (b) $NiCo_{2-x}Mn_xO_4$ -1.5, Ni-MOF, $NiCo_2O_4$ and $NiMn_2O_4$ electrodes.

Fig. S8: (a) XRD patterns before and after stability of NiCo_{2-x}Mn_xO₄@Ni-MOF-1 and (b) FE-SEM image after stability of NiCo_{2-x}Mn_xO₄@Ni-MOF-1 electrode.

Fig. S9: (a) XPS survey spectrum, after stability of NiCo_{2-x}Mn_xO₄@Ni-MOF-1, high-resolution XPS spectra of (b) Ni 2p, (c) Co 2p, (d) Mn 2p, (e) C 1s and (f) O 1s of the after stability of NiCo_{2-x}Mn_xO₄@Ni-MOF-1.

Sr. No.	Material based on Ni, Co, Mn, oxides	Method of preparation	Morphology	Electrolyte	Specific capacitance Cs (F/g)	Retention % After Cycles	Ref.
1.	NiCo2O4@Ni-MOF	Hydrothermal	Nanowires	2 М КОН	208.8 mAh/g (2 mA/cm ²)	-	ACS Appl. Mater. Interfaces 2019, 11, 41, 37675–37684
2.	NiCo ₂ O ₄ /rGO	Ultrasonic spraying	laminated structure	2 M KOH	871 (1 A/g)	134/30000	J. mater. sci. technol. 99 (2022) 260–269
3.	NiCo ₂ O ₄ @MnO ₂	Electrodepositio n	nanosheets	1 M KOH	913.6 (0.5 A/g)	87.1/3000	J. Mater. Chem. A, 2014,2, 4795-4802
4.	CQD/NiCo ₂ O ₄	reflux	sphere	2 M KOH	856 (1 A/g)	98.7/ 10000	J. Mater. Chem. A. 3 (2015) 866–877.
5.	CNT/NiCo ₂ O ₄	Electrodepositio n	Nanosheets	6 M KOH	695 (1 A/g)	91/1500	J. Mater. Chem. A, 2017,5, 5886-5894
6.	C@NiCo2O4	Hydrothermal	microsphere	6 M KOH	404 (1 A/g)	87.1/ 1000	J. Alloys Compd.749, 2018, 305-312
7.	NiCo ₂ O ₄ @Ni foam	Combustion	honeycomb- like	2 M KOH	646.6 (1 A/g)	96.5/ 3000	Electrochim. Acta 224 (2017) 378–385
8.	NiCo ₂ O ₄ -ECN	Hydrothermal	Nanoflowers	6 M KOH	596.8 (2 A/g)	97/3100	Electrochim. Acta 1 (2017), 288-295
9.	MWCNT/GO/NiCo ₂ O ₄	Hydrothermal	Nanocrystalli ne	6 M KOH	707 (2.5 A/g)	88/5000	J. Alloys Compd,765 (2018), 369-379
10.	NiCo ₂ O ₄ @rGO	Hydrothermal	nanoneedles	2 М КОН	1427 (8 A/g)	83.8/10000	J. Mater. Chem. A, 2018,6, 22106-22114
11.	CNF@ NiCo2O	Co-precipitation	Nanosheets	2 M KOH	902 (2 A/g)	96.4/2400	Sci. Rep. 3 (1) (2013) 1470.
12.	NiMn ₂ O ₄ @rGO	Hydrothermal	nanoneedless	6 M KOH	882 (1 A/g)	93.8/5000	Environ. Sci.: Nano, 2020,7, 198-209
13.	PANI- NiMn ₂ O ₄	Combustion	Nanospheres	1 M KOH	442	96/1000	Mater. Sci. Eng. B. 294 (2023) 116553
14.	NiMn ₂ O ₄ /3DPNG	In-situ	Nanocrystals	6 mol/L KOH	1308.2	91.6 %/ 10000	Appl. Surf. Sci. 507, 2020, 145065
15.	NiCo ₂ O ₄ @ NiMn ₂ O ₄	Hydrothermal	nanoneedle arrays	3 M KOH	539.2	93/5000	Ceram. Int.45, 2019, 16904-16910
16.	$CoFe_2O_4$ $NiMn_2O_4$	Hydrothermal	Nanospheres	1 M KOH	353.6 mAh/g	88.4/10000	J. Alloys Compd. 959, 2023, 170483
	[GNMOPLIGNMOL	Hydrothermal	Quasi-		[757] [/36.6]		Electrochim. Acta

	[NMO]		spherical-		[194]		216, 2016, 386-396
18.	$FeVO_4 \parallel NiMn_2O_4$	Combustion	Polyhedral shape	1 M Na ₂ SO ₄	202	91/15000	RSC Advances. 5 (2015) 27649–27656.
19.	NiMn ₂ O ₄ @CoS	Hydrothermal	Nano-flakes	1 M KOH	1751	94/5000	Chem. Eng. 2018, 6, 12, 16933–16940
20.	NiCo _{2-x} Mn _x O ₄ @Ni- MOF-1	Hydrothermal	Nanoflowers	2 М КОН	3543	93.7/15000	This Work

Table S1: Capacitive performance comparison of some nickel, cobalt, manganese based metal oxides and Ni-MOF based electrodes.

The possible reaction mechanism for OER over $NiCo_{2-x}Mn_xO_4$ -based electrode:

Hydroxide ion adsorption:

$$NiCo_{2-x}Mn_xO_4 + OH^- \rightarrow NiCo_{2-x}Mn_xO_4 - OH + e^-$$
(1)

Oxidation to oxide species:

$$NiCo_{2-x}Mn_xO_4-OH + e^- \rightarrow NiCo_{2-x}Mn_xO_4-O + H^+ + e^-$$
(2)

Formation of peroxide intermediate:

$$NiCo_{2-x}Mn_xO_4-O+OH^- \rightarrow NiCo_{2-x}Mn_xO_4-OOH + e^-$$
 (3)

Formation and release of oxygen:

$$NiCo_{2-x}Mn_xO_4-OOH+OH^- \rightarrow NiCo_{2-x}Mn_xO_4+O_2 \quad H_2O+e^-$$
(4)

This proposed mechanism highlights the steps involved in the OER process on a $NiCo_{2-x}Mn_xO_4$ based electrocatalyst, emphasizing the role of each component in facilitating the reaction.

Sr. No.	Catalyst	Overpotential (η)	Tafel slope	Mass-based specific
		(mV)	(mV dec ⁻¹)	activity
		@ 10 mA cm ⁻²		at $\eta = 0.35 \text{ V} (\text{A g}^{-1})$
1.	NiMn ₂ O ₄	662 ± 9	298.3 ± 0.001	0.93
2.	NiCo ₂ O ₄	628 ± 7	272.3 ± 0.008	1.2
3.	NiCo _{2-x} Mn _x O ₄ -1.5	542 ± 6	265.9 ± 0.00514	1.3
4.	RuO ₂	467 ± 6	224.4 ± 0.009	3.5
5.	NiCo _{2-x} Mn _x O ₄ -0.5	456±7	189.4 ± 0.0022	2.1
6.	NiCo _{2-x} Mn _x O ₄ -1	393 ± 6	178.1 ± 0.009	5.8
7.	NiCo _{2-x} Mn _x O ₄ @Ni-MOF-1	296 ± 5	131 ± 0.001	8.4

Table S2: Comparative summarized data such as catalyst used, overpotential, Tafel slope with error bar and mass-basedspecific activity at $\eta = 0.35$ V.

Sr.	Catalyst	Tafel slope	Overpotential	Ref.
No.		(mV dec ⁻¹)	(mV)	
			@ 10 mA cm ⁻²	
1.	NiCo-LDH/NiCoPi	73	300	GEE 9 (2024) 1151e1158
2.	NiCo-LDH	123	410	J. Colloid Interface Sci.
				604 (2021) 832–843
3.	Ni _{0.77} Rh _{0.23} Oy	53.7	310	J. Alloys Compd. 836 (2020) 155309
4.	NiCoO ₂ /CNTs	156	460	Electrochim. Acta. 252
				(2017) 338–349
5.	NiCoO ₂ @CFP	57	303	Electrochim. Acta. 174 (2019)
C			420	246–253 L Matan Chana A 2021 0
6.	NiCoO _x	N/A	420	J. Mater. Chem. A, 2021, 9, 8576-8585
7.	Ir-doped NiCo ₂ O ₄	71	340	Applied Catalysis A,
	1			General 626 (2021) 118377
8.	PtCoNi/GNR	76	350	J. Mater. Chem. A, 2020,
				8, 17691–17705
9.	Co ₃ O ₄ -NiCo ₂ O ₄ /N-rGO	124	390	Energy and Fuels 2021,
				35, 4550.
10.	NiCo ₂ O ₄ /NCNTs/NiCo	89	350	Chem. Eng. J. 2021, 408,
11	N'O O /O NO NO	00.0	252	127814.
11.	$N_1CO_2O_4/CONC-NS$	90.8	352	Int. J. Hydrogen Energy 2023,
12	NiCo I DH	64	307	48, 13432. Carbon 110 (2019) 1e7
12.	C_{0}	55	307 447	ChemistrySelect 2019 A
15.	0304-550 0	55		1131
14.	CoNi20-MOFNs@MX	61.6	379	ChemNanoMat., 2021, 7.
				539.
15.	NiCo ₂ O ₄ (CH ₃ OH)	45.7	380	ChemElectroChem
				2019, 6, 4429.
16.	1% P-NiCo ₂ O ₄	95	370	Nanomaterials 2020, 10, 1.
17.	Ni _{0.75} Cu _{0.25} Co ₂ O ₄ /GF	119	509	Appl. Catal. B Environ.
				2021, 291, 120065.
18.	NiCo ₂ O ₄	94.63	400	RSC Adv.,2023,13,23547
19.	N1Co ₂ O ₄ /MXene	64.63	360	ChemCatChem 2024,16,
20	NC. M. O ON	121	207	e2023012
20.	MOF-1	131	290	I HIS WORK

 Table S3: Comparison of OER performance Ni, Mn, Co, oxide based electrocatalysts in alkaline

media with recently reported works.