Supplementary Materials

Composite of Perovskite and Fluorite Fuel Electrodes for Efficient Carbon Dioxide electrolysis in Solid Oxide Electrolyzer Cells

Hao-Yang Li and Pei-Chen Su*

School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore

*Corresponding author: peichensu@ntu.edu.sg

Fig. S1 - XPS spectra of O 1s on (a) SFM-SDC, (b) SFM-CMF, (c) CMF electrodes.

Fig. S2 - XPS spectra of Mn 2p on (a) SFM-CMF, (b) CMF electrodes.

Fig. S3 - XPS spectra of Ce 3d on (a) SFM-SDC, (b) SFM-CMF, (c) CMF electrodes.

Fig. S4 - XPS spectra of Fe $2p_{3/2}$ on (a) SFM-SDC, (b) SFM-CMF, (c) CMF electrodes.

Fig. S5 - XPS spectra of Mo $3d_{5/2}$ on (a) SFM-SDC, (b) SFM-CMF electrodes.

 Table S1 - Atomic ratio of Fe ions at different valence-states in SFM-CMF (weigh ratio = 6:4) electrodes.

	Fe ⁴⁺	Fe ³⁺	Fe ²⁺	Average valence
Theoretical	44 at. %	34 at. %	22 at. %	3.2
Practical	56 at. %	29 at. %	15 at. %	3.4

Theoretical: Mathematical calculation, data from XPS results of SFM 1 and CMF (Fig. - S5)

Practical: XPS characterization result. (Fig. 3d)

Fig. S6 - EIS of cells from OCV to1.4 V at 1073 K with **(a)** SFM-CMF, **(b)**SFM-SDC, **(c)**CMF, **(d)** SDC as cathode

Cells configuration	R _p (Ω cm ⁻²)	Current Density (A cm ⁻²)	Durability	References
Ni-YSZ YSZ RuO2@LSM-YSZ	~0.4	0.927	Unstable.	2
FeNi3@SFMN-GDC LDC/LSGM	0.42	0.93	18% degradation under 0.934 A cm ⁻² for 20min	3
LSCF-GDC				
SFM-SDC LDC/LSGM LSCF-SDC	0.19@1.5V	1.09	Relatively stable under ~1 A cm ⁻² for 20min	1
CoFe@SFMC-GDC LDC/LSGM	0.12	1.20	Stable under ~1 A cm ⁻² for 20min	4
BSCF-GDC				
SFNM+1.2Fe-GDC GDC/LSGM	0.2453	1.13	~30% degradation under ~1 A cm ⁻² for 40 hour	5
LSCF-GDC (850℃)	(CO/CO ₂)			
RuFe@SFRuM-GDC LSGM BSCF-	0.11	2.25	~30% degradation under ~0.6 A cm ⁻² for 100 hour	6
GDC				
Ni-Fe-LSFM LSGM BLC	~2	2.32	Conduct 100h electrolysis at 0.5A	7
CoFe@LSCFM-GDC LDC/LSGM	0.15	2.40	~30% degradation under ~0.6 A cm ⁻² for 100 hour	8
BSCF-GDC				
SFM-CMF LSGM SSC-SDC	0.089	3.02	13.4% degradation under ~1.0 A cm ⁻² for 40 hour	This work
	(CO/CO ₂)			

Table S2. Comparison of the properties with state-of-the-art electolyzers for pure CO_2 electrolysis at 1073K. Polarization resistances (R_p) was collected at 1.2 V, and current density at 1.6 V.

References

- Y. Li, X. Chen, Y. Yang, Y. Jiang and C. Xia, *ACS Sustainable Chemistry & Engineering*, 2017, 5, 11403-11412.
- Y. Song, Z. Zhou, X. Zhang, Y. Zhou, H. Gong, H. Lv, Q. Liu, G. Wang and X. Bao, *Journal of Materials Chemistry A*, 2018, 6, 13661-13667.
- H. Lv, L. Lin, X. Zhang, D. Gao, Y. Song, Y. Zhou, Q. Liu, G. Wang and X. Bao, *Journal of Materials Chemistry A*, 2019, 7, 11967-11975.
- 4. H. Lv, L. Lin, X. Zhang, Y. Song, H. Matsumoto, C. Zeng, N. Ta, W. Liu, D. Gao and G. Wang, *Advanced Materials*, 2020, **32**, 1906193.
- 5. B.-W. Zhang, M.-N. Zhu, M.-R. Gao, X. Xi, N. Duan, Z. Chen, R.-F. Feng, H. Zeng and J.-L. Luo, *Nature communications*, 2022, **13**, 1-12.
- H. Lv, L. Lin, X. Zhang, R. Li, Y. Song, H. Matsumoto, N. Ta, C. Zeng, Q. Fu and G. Wang, *Nature communications*, 2021, 12, 1-11.
- 7. S. Wang, H. Tsuruta, M. Asanuma and T. Ishihara, *Advanced Energy Materials*, 2015, 5, 1401003.
- 8. H. Lv, T. Liu, X. Zhang, Y. Song, H. Matsumoto, N. Ta, C. Zeng, G. Wang and X. Bao, *Angewandte Chemie International Edition*, 2020, **59**, 15968-15973.