Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Mitigating Jahn-Teller Distortion and Phase Transition in P2-Na_{0.67}Ni_{0.33}Mn_{0.67}O₂ Cathode through Large Sr²⁺ ion Substitution for Improved Performance

Xilong Zhang, Fei Xie, Xuejie Wang, Tao Liu, Liuyang Zhang^{*}, Jiaguo Yu^{*}

Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China.

* Corresponding author.

E-mail: zhangliuyang@cug.edu.cn; yujiaguo93@cug.edu.cn (J. Yu)

Figure S1. Rietveld refinement of the XRD patterns for (a) Sr0.02-NM and (b) Sr0.06-NM. (c) XRD pattern for the samples at the range of 27~28 degrees.

Figure S2. SEM images of (a) NM, (b) Sr0.02-NM, (c) Sr0.04-NM, and (d) Sr0.06-NM.

Figure S3. XPS results of powder samples. (a) survey spectrum. Fitting results of (b) manganese, (c) nickel, and (d) oxygen.

Figure S4. Ex-situ XPS patterns for (a) sodium and (b) oxygen elements at five electrochemical

states.

Figure S5. Multi-cycle cyclic voltammetry curves of (a) Sr0.02-NM, (b) Sr0.06-NM, and multiscan-rate cyclic voltammetry curves of (c) Sr0.02-NM, (d) Sr0.06-NM.

Figure S6. The peak currents of the (a) peaks 2 and 5 of NM and Sr0.04-NM, (b) GITT test (time

vs. log D).

Figure S7. The Nyquist plots of the electrochemical impedance spectroscopies test with an equivalent circuit embedded.

Figure S8. Electrochemistry performance. (a) Cycle performance of samples at 1 C between 2.0 V and 4.25 V. (b) Energy density and median voltage of the electrodes.

Figure S9. The XRD patterns of the electrodes before and after 20 cycles at 1 C rate for NM and

Sr0.04-NM.

Figure S10. SEM images of the electrodes for (a) NM and (b) Sr0.04-NM. (a_1) and (b_1) are the images of pristine electrodes before testing. (a_2) , (a_3) , (b_2) , and (b_3) belong to the electrodes after 20 cycles at a 5 C current rate.

Figure S11. DFT calculations of NM and Sr0.04-NM. (a) The total density of states and the pDOS of (b) manganese and (c) nickel.

Space group = <i>P</i> 6 ₃ / <i>mmc</i>		$R_{\rm p} = 6.16\%$		$R_{\rm wp} = 10.65\%$		
<i>a</i> (Å) = <i>b</i> (Å) = 2.878780		<i>c</i> (Å) = 1	1.270700	$V(Å^3) = 80.902$		
Atom	Wyckoff position	X	У	Z	U _{iso}	Occ.
0	4f	0.6667	0.3333	0.0878	0.00923	1.0473
Na_f	2b	0.0000	0.0000	0.2500	0.14409	0.5085
Na_e	2d	0.3333	0.6667	0.7500	0.12125	0.7670
Ni	2a	0.0000	0.0000	0.0000	0.14846	0.3199
Mn	2a	0.0000	0.0000	0.0000	-0.03354	0.7306

 Table S1. The crystallographic results of NM from XRD refinement.

 Table S2. The crystallographic results of Sr0.02-NM from XRD refinement.

Space group = <i>P</i> 6 ₃ / <i>mmc</i>		$R_{\rm p} = 6.18\%$		$R_{\rm wp} = 10.58\%$			
<i>a</i> (Å) = <i>b</i> (Å) = 2.879209		c (Å) = 1	1.263156	$V(Å^3) = 80.861$		1	
Atom	Wyckoff position	x	у	Z	z U _{iso}		
0	4f	0.6667	0.3333	0.091788	-0.00164	0.8581	
Na_f	2b	0.0000	0.0000	0.2500	0.06815	0.0681	
Na_e	2d	0.3333	0.6667	0.7500	0.04325	0.3984	
Ni	2a	0.0000	0.0000	0.0000	0.01514	0.3363	
Mn	2a	0.0000	0.0000	0.0000	0.00938	0.6668	
Sr_f	2b	0.0000	0.0000	0.2500	0.06544	0.0067	
Sr_e	2d	0.3333	0.6667	0.7500	0.05310	0.0133	

Table S3. The crystallographic results of Sr0.04-NM from XRD refinement.

Space group = <i>P</i> 6 ₃ / <i>mmc</i>		$R_{\rm p} = 6.76\%$		$R_{\rm wp} = 11.30\%$			
a (Å) = b (Å) =	<i>a</i> (Å) = <i>b</i> (Å) = 2.879814		1.255483	$V(Å^3) = 80.73$		9	
Atom	Wyckoff position	x y		Z	U _{iso}	Occ.	
0	4f	0.6667	0.3333	0.094207	0.02081	0.9573	
Na_f	2b	0.0000	0.0000	0.2500	0.09217	0.3814	
Na_e	2d	0.3333	0.6667	0.7500	0.13286	0.4986	
Ni	2a	0.0000	0.0000	0.0000	0.02229	0.3220	
Mn	2a	0.0000	0.0000	0.0000	0.00800	0.6529	
Sr_f	2b	0.0000	0.0000	0.2500	0.12355	0.0131	
Sr_e	2d	0.3333	0.6667	0.7500	0.02977	0.0267	

 Table S4. The crystallographic results of Sr0.06-NM from XRD refinement.

Space group = <i>P</i> 6 ₃ / <i>mmc</i>		$R_{\rm p} = 7.82\%$		1	$R_{\rm wp} = 12.65\%$		
a(A) = b(A) =	= 2.878919	<i>c</i> (Å) = 1	1.267184	V	2		
Atom	Wyckoff position	X	у	z U _{iso}		Occ.	
0	4f	0.6667	0.3333	0.093658	0.03380	0.9029	
Na_f	2b	0.0000	0.0000	0.2500	0.19654	0.3359	
Na_e	2d	0.3333	0.6667	0.7500	0.17187	0.4603	
Ni	2a	0.0000	0.0000	0.0000	-0.04947	0.3300	
Mn	2a	0.0000	0.0000	0.0000	0.15520	0.6659	
Sr_f	2b	0.0000	0.0000	0.2500	0.01867	0.0298	
Sr_e	2d	0.3333	0.6667	0.7500	0.08738	0.0314	

Element	Designed mol ratio	wt%	mol%	Normalization
Na	0.67	12.19131	0.530288	0.575234
Ni	0.33	14.27771	0.243261	0.263879
Mn	0.67	33.93238	0.617649	0.67
Na	0.67	12.21079	0.531135	0.566816
Sr	0.04	2.700095	0.030812	0.032882
Ni	0.33	14.62216	0.249129	0.265866
Mn	0.67	34.49133	0.627823	0.67

Table S5. ICP-OES results. The mass and mole fraction of each element of NM and Sr0.04-NM.

Table S6. The fitting results of the electrochemical impedance spectroscopies.

Electrodes	$\mathbf{R}_{_{\Omega}}$	R _{ct}
NM	6.075	221.2
Sr0.02-NM	6.095	184.3
Sr0.04-NM	6.323	129.8
Sr0.06-NM	5.85	87.39

Table S7. The results of the XRD peak intensity in Figure S8 are based on the diffraction peak of

A1.							
Electrodes	Pristine ratio to intensity of Al	Ratio of electrodes after 20 cycles	Retention				
NM	1.73	0.75	43%				
Sr0.02-NM	1.82	0.83	45%				
Sr0.04-NM	2.08	1.71	82%				
Sr0.06-NM	1.15	0.94	82%				

		Rate capacity Cycli			yclic stabi	clic stability	
Cathodes	Voltage range (V)	Maximum capacity (rate) (mAh g ⁻¹)	High rate capacity (rate) (mAh g ⁻¹)	Initial capacity (rate) (mAh g ⁻¹)	Cycle numbers	Retention	Ref.
P2-Na _{0.59} Sr _{0.04} Ni _{0.33} Mn _{0.67} O ₂	2.0-4.25	154.2 (0.1 C)	68.3 (10 C)	117.6 (1 C)	100	69 1	This work
P2-Na _{0.57} Ni _{0.33} Mn _{0.67} O ₂	2.0-4.25	171.1 (0.1 C)	25.8 (10 C)	141.3 (1 C)	100	40.1	This work
O3-NaNi _{1/3} Fe _{1/3} Mn _{1/3} O ₂	2.0-4.0	~131 (0.1 C)	~82 (10 C)	~119 (1 C)	100	63	11
O3/P2 Na _{0.88} Ni _{0.45} Mn _{0.55} O ₂	2.0-4.0	127.2 (0.05 C)	~78 (10 C)	106.7 (1 C)	250	71.1	15
P2-Na _{0.78} Al _{0.05} Ni _{0.33} Mn _{0.60} O ₂	2.0-4.5	123.9 (0.1 C)	41.2 (5 C)	131 (0.1 C)	50	83.9	19
P2- Na _{0.75} Ca _{0.04} [Li _{0.1} Ni _{0.2} Mn _{0.67}]O ₂	2.0-4.3	133.1 (0.1 C)	68.8 (20 C)	136.9 (0.1C)	50	94.2	27
P2- Na _{0.67} Ni _{0.15} Fe _{0.2} Mn _{0.65} F _{0.05} O _{1.95}	1.5-4.3	229 (0.1 C)	100 (10 C)	~229 (0.1 C)	50	87.7	35
P2-Na _{2/3} [Ni _{0.3} Co _{0.1} Mn _{0.6}]O ₂	2.0-4.3	161.6 (0.1 C)	~90 (10 C)	161.6 (0.1 C)	50	79.2	45
P2-Na _{2/3} [Ni _{1/3} Mn _{2/3}]O ₂	2.3-4.5	134 (0.01 C)	None	134 (0.01 C)	10	64	53

Table S8. Electrochemical properties of Ni/Mn-based cathodes under different voltage window