
Supplementary Information  

 

Machine Learning-Assisted 3D Printing of Thermoelectric Materials of Ultrahigh 

Performances at Room Temperature 

 

Kaidong Song,‡a Guoyue Xu,‡a Ali Newaz Mohammad Tanvir,‡a Ke Wang,b Md Omarsany 
Bappy,a Haijian Yang,c Wenjie Shang,a Le Zhou,c Alexander W. Dowling,b Tengei Luo*a and 
Yanliang Zhang*a 

 

(+These authors made equal contributions) 

 

a. Department of Aerospace and Mechanical Engineering, University of Notre 

Dame, Notre Dame, IN 46556, USA. E-mail: tluo@nd.edu; yzhang45@nd.edu 
b. Department of Chemical and Biomolecular Engineering, University of Notre 

Dame, Notre Dame, IN 46556, USA. 
c. Department of Mechanical Engineering, Marquette University, Milwaukee, WI 

53233, USA. 

   

Supplementary Information (SI) for Journal of Materials Chemistry A.
This journal is © The Royal Society of Chemistry 2024

mailto:tluo@nd.edu
mailto:yzhang45@nd.edu


Contents 
Supplementary Note 1. Ink appearance with modification ........................ 3 

Supplementary Note 2. Ink rheological properties ............................... 4 

Supplementary Note 3. Machine learning process ............................... 5 

Supplementary Note 4. Properties evaluation criteria ............................ 6 

Supplementary Note 5. All experimental data ................................... 8 

Supplementary Note 6. Correlations analysis .................................. 10 

Supplementary Note 7. Candidate selection informed by constrained BO ........... 11 

Supplementary Note 8. SEM and EDS of unoptimized sample .................... 12 

Supplementary Note 9. Cross-section SEM of sample processed by HIP ............ 13 

Supplementary Note 10. Dimensional change evaluation ......................... 14 

Supplementary Note 11. Thermal conductivity measurement ..................... 15 

Supplementary Note 12. Machine learning and Bayesian optimization methods ..... 16 

Supplementary Note 13. The effects of X-gum concentration on the structure’s porosity

......................................................................... 19 

 

  



Supplementary Note 1. Ink appearance with modification 

To enhance the printability of BiSbTe-based thermoelectric ink, Xanthan gum (X-gum) was 

incorporated to adjust the ink viscosity and yield stress. This modification is illustrated in 

Figure S1, where the addition of X-gum led to the solvent transitioning from a liquid to a solid 

state. Consequently, the ink itself also becomes solid when at rest. Furthermore, overhang 

filaments were printed to examine the ink’s structural stability. As depicted in Figure S1b, the 

rheological modified ink successfully formed filaments with precise geometry on a support 

structure. When these filaments were extruded beyond the support, the modified ink quickly 

changed from a liquid-like to a solid-like state, facilitated by its yield stress and shear-thinning 

properties. This resulted in forming rigid filaments capable of retaining their shape in mid-air. 

In contrast, filaments made with unmodified ink, as shown in Figure S1a, lacked enough yield 

stress to support the printed spanning structures. This ability to print self-supporting filaments 

demonstrates the effectiveness of X-gum modification, indicating its suitability for creating 

complex 3D structures through printing. 

 
Figure S1. Ink appearance (a) before and (b) after modification with X-gum. 
  



Supplementary Note 2. Ink rheological properties 

Figures S2a and S2b illustrate that both X-gum-modified and unmodified inks are shear-

thinning non-Newtonian fluids, meaning their viscosity decreases as the shear rate increases. 

This shear-thinning property occurs because, under shear stress (like stirring or extrusion), X-

gum's molecular chains align in the flow direction, reducing internal resistance and lowering 

viscosity, thus enabling more effortless fluid flow. When the shear force is removed, X-gum 

molecules return to a disordered state, and the ink regains its initial viscosity. This reversible 

viscosity change under different shear rates makes X-gum an ideal component in ink 

formulations for precise, clean printing, as it flows easily under printing stress but thickens 

afterward to prevent spreading. 

In addition to being shear-thinning, the thermoelectric (TE) inks exhibit viscoelasticity with 

yield stress, as shown in Figures S2c and S2d. The yield stress increases with a higher 

concentration of X-gum due to X-gum's ability to form a weak gel-like network in the solution 

that traps solvent molecules, imparting a solid-like behavior under low shear. When shear stress 

surpasses the yield stress, the network breaks down, and the ink flows. This characteristic is 

crucial for 3D printing, where the ink must stay stable and retain shape when at rest or under 

low stress but flow readily when extruded. The ink's viscosity increases post-extrusion, aiding 

in maintaining the structure of the print. Moreover, higher particle loading leads to increased 

yield stress, as seen in the comparison between 62 and 82 wt.% particle loadings, due to more 

particles being jammed together. 

 

Figure S2. Rheological data of TE. (a) (b) Viscosity versus shear rate with a log scale and, 

(c) (d) shear moduli as a function of shear stress. 

https://www.sciencedirect.com/topics/engineering/shear-modulus


Supplementary Note 3. Machine learning process 

Figure S3 visulaized the input and output from the machine learning model, aiming to solve a 

co-optimization problem for identifying the optimal combination of ink formulation with 

printing conditions that will maximize the thermoelectric power factor with constraints of 3D 

filament uniformity and structure surface roughness. The model takes both ink and process 

parameters: the former controls the concentration of X-gum and BiSbTe (TE) particle loading, 

while the latter includes the standoff distance and filament spacing. The machine learning 

model assimilates those multi-dimensional variables to predict the corresponding power factor 

as well as filament uniformity and structural roughness coefficient. Those predicted values will 

be leveraged by Bayesian optimization (BO) algorithms to recommend new experimental 

conditions, refining the search for optimal parameters through the iterative learning strategy. 

 

Figure S3. Input parameters and evaluate metrics for machine learning. 
  



Supplementary Note 4. Properties evaluation criteria 
As illustrated in Figure S4a, there are four types of filament morphology, and the filament 

morphology may eventually change from well-defined to irregular to broken. A dimensionless 

number defined as filament uniformity (y2) was used to quantify the morphology of filaments 

by calculating the ratio of the pixel area of a printed filament over the total pixel area of an 

ideally deposited filament (the area inside the dashed rectangle) (Equation S1). Photographic 

images of each printed filament were analyzed using ImageJ (NIH, Bethesda, Maryland) to 

yield the values of pixel area to determine y2. 

 

Figure S4b illustrates the effects of filament spacing and the representative surface roughness 

measurement figures. During extrusion printing, a subsequently deposited filament overlaps 

with a previously deposited filament. If the overlap distance is too large, the whole structure 

may have poor integrity and large surface roughness due to the weak connection between 

adjacent filaments. If the overlap distance is too small, the subsequently printed filament 

overlaps with the previously deposited filament, and the resulting over-deposition phenomenon 

can be evident. The overlap distance must be carefully selected to ensure the structure has 

enough integrity and minimizes the over-deposition phenomenon and surface roughness. A 

suitable overlap should make a printed structure with a good fusion between filaments, which 

results in good mechanical strength and low surface roughness. The calculation of this 3D 

structure roughness coefficient can be found in Equation S2. 

 

Filament uniformity ratio (y2) = 
pixel area of a printed filament

pixel area of a perfectly deposited filament
 (Equation S1) 

3D structure roughness coefficient (y3) = 
arithmetic average roughess (𝑅𝑎)

 filament diameter
 (Equation S2) 

https://www.sciencedirect.com/topics/materials-science/mechanical-property
https://www.sciencedirect.com/topics/materials-science/mechanical-strength


 
Figure S4. Properties evaluation criteria for (a) standoff distance and (b) filament spacing. 

  



Supplementary Note 5. All experimental data  
Table S1 provides detailed experimental data for all four rounds. Table S2 compares the power 

factor for samples created using various 3D printing techniques. 

 

Table S1. Experimental and machine learning database for printing BiSbTe ink 

Round Exp # 
Solid 

phase ratio  

(wt %) 

X-gum 
concentration 

(wt %)  

Standoff 
distance 

(mm) 

Line 
distance 

(mm) 

Power factor 
(μW/mK2) 

Power 
factor_std 

(μW/mK2) 

Filament 
uniformity 

(N/A) 

Filament_std 
(N/A) 

3D roughness 
coefficient 

(%) 

3D_std 
(%) 

0 1 42 4.00  0.75 1.4 133.80  20.89  0.897  0.009  6.847  0.998  

0 2 42 2.00  0.75 2.0 242.27  84.35  0.938  0.006  1.740  0.172  

0 3 42 1.00  0.75 1.4 311.97  54.15  0.784  0.009  3.434  0.986  

0 4 62 4.00  0.75 1.4 634.71  110.81  0.788  0.035  4.875  2.139  

0 5 62 2.00  0.75 1.4 1719.88  198.32  0.830  0.062  3.130  0.659  

0 6 62 2.00  1.54 1.4 1655.85  13.19  0.928  0.013  3.121  0.004  

0 7 62 2.00  1.54 1.0 1710.73  44.19  0.928  0.013  3.484  0.611  

0 8 62 2.00  1.54 2.0 1568.91  9.55  0.928  0.013  7.614  0.537  

0 9 62 1.00  0.30 1.4 2034.92  152.18  0.817  0.025  3.868  0.125  

0 10 62 1.00  0.75 1.4 2074.51  171.53  0.922  0.026  2.781  0.250  

0 11 62 1.00  1.00 1.4 1982.31  167.72  0.937  0.013  2.775  0.714  

0 12 62 1.00  1.00 1.0 2132.95  225.92  0.937  0.013  4.290  0.012  

0 13 62 1.00  1.00 2.0 2061.15  43.79  0.937  0.013  1.785  0.056  

0 14 69 1.00  0.30 2.0 2349.56  359.00  0.823  0.028  4.223  0.545  

0 15 82 1.00  2.00 2.0 2332.41  25.34  0.863  0.088  6.760  1.449  

1 16 75 0.50 1.00 1.5 2513.65  322.57  0.808 0.034 3.555 0.273 

1 17 82 0.70 1.20 1.4 3004.75  193.30  0.848 0.009 2.249 0.368 

1 18 80 0.50  1.00 1.5 2997.06  71.88  0.810  0.056  2.795  0.055  

2 19 82 0.50  1.50 1.0 3010.33  171.04  0.860  0.005  2.275  0.248  

2 20 84 0.50  1.50 1.0 2688.41  99.48  0.753  0.057  2.753  0.190  

2 21 84 0.50  1.10 1.0 2718.77  350.18  0.723  0.027  2.849  0.313  

3 22 83 0.50  1.00 1.6 3014.06  223.17  0.824  0.028  2.468  0.198  

3 23 83 0.70  1.00 1.6 2982.73  110.81  0.835  0.010  2.564  0.540  

3 24 81 0.50  1.00 1.6 2987.51  83.62  0.840  0.024  3.000  0.288  

 

 

 

 

 

 

 

 

 

 

 

 



Table S2. Comparison of printing methods 

Active material Additives Process Power 

factor 

(µW/mK2 ) 

zT Ref 

Bi
0.4

Sb
1.6

Te
3
   Screen printing ~3000 1.0 [1] 

BixSb2-xTe3 Chalcogenidometallate 

(ChaM) 

Extrusion 

printing 

~2400 ~0.95 [2] 

Ag
2.1

Te   Inkjet printing ~222.5 0.19 [3] 

PEDOT:PSS Multiwall carbon 

nanotubes 

Aerosol jet 

printing 

~20 0.022 [4] 

Bi0.4Sb1.6Te3 X-gum Extrusion 

printing 

~3000 1.3 This 

work 



Supplementary Note 6. Correlations analysis 
In Figure S6a, it has been shown that there is a positive correlation (0.928), between TE 

particle loading (solid phase ratio) and thermoelectric power factor. Notably, beyond an 83% 

threshold, the incremental benefits begin to diminish markedly. In Figure S6b, a reduction in 

the additive (Xanthan gum) concentration has been associated with an enhancement in power 

factor, displaying a correlation factor of 0.791, with diminishing marginal returns below 0.7%. 

It is important to recognize that lowering the X-gum concentration below this point can 

negatively affect printability and reduce the quality of the filament and roughness, with the 

roughness nearing the maximum limit we find acceptable, as evidenced in Figures S6c and 

S6d. Consequently, the empirical evidence guided the cessation of further increases in solid 

phase ratio at 84% and X-gum concentration at 0.5%. The observed correlations confirm the 

presence of non-linear relationships among variables.  

 

Figure S6. Data correlation analysis. (a) Solid phase ratio and power factor correlation. (b) X-

gum concentration and power factor correlation. (c) X-gum and roughness correlation. (d) X-

gum and filament correlation. 

  



Supplementary Note 7. Candidate selection informed by constrained BO 
Note 7 describes the process for selecting candidates. Figure S7a shows the mean of the GPR 

predictions as a function of TE particle loading ratio and additive (X-gum) concentration. 

Standoff distance is fixed at 1 mm, and filament spacing is fixed at 1.6 mm. The hollow 

diamond symbols mean the projection of the experimental data to this plane, and the green stars 

mean the points chosen for the next round of the experiment. Similarly, Figure S7b shows the 

uncertainty of the GPR predictions. The blue regions are denoted as the zones that have been 

thoroughly explored, suggesting a shift in strategy towards the exploitation of these areas. 

Figure S7c shows the Expected Improvement (EI) metric, where it shows the potential 

increment. Figure S7d shows the constrained EI, highlighting the most favorable region for 

achieving high power factors while within the set constraints, which is determined by the 

product of the SVMs probabilities and the EI value. Compared to Figure S7c, the red region 

shrinks, balancing on the regions where high power factor and material printability are both 

achievable. The red areas in this figure reflect the most favorable conditions recommended for 

future experiments, balancing the maximization of the power factor against the practical 

limitations of material printability. 

 

By including the expert intuition in the selection, the highest constrained EI point was selected, 

and two more points around the red region for exploration. The effectiveness of this region was 

confirmed through experimentation, leading to the attainment of significant power factors, 

approximately 3000 µW/mK2, and creating structures with a mean roughness coefficient of 

0.025. 

 
Figure S7. The cross-section figure at standoff distance at 1mm and line distance at 1.6mm. 

The hollow points are the projection points in this cross-section. The stars represent the 

candidates for the next round of experiments. a) the GPR prediction means. b) the GPR 

prediction standard deviations c) the expected improvement BO. d) the constrained Expected 

Improvement. 



Supplementary Note 8. SEM and EDS of unoptimized sample 
An analysis of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy 

(EDS) is conducted on polished cross-sections (surface horizontal to the pressing direction) of 

printed samples using unoptimized inks (Figure S8). 

 

 
Figure S8. Cross-sectional EDS images of samples printed through unoptimized ink. 

  



Supplementary Note 9. Cross-section SEM of sample processed by HIP 
The microstructure of printed TE samples before and after hot isostatic pressing (HIP) is 

shown in Figure S9.  

 

Figure S9. Cross-sectional SEM images of printed samples before and after HIP. 

  



Supplementary Note 10. Dimensional change evaluation 
 

 

Figure S10. Comparison of samples dimension change under cold press and HIP conditions. 

  



Supplementary Note 11. Thermal conductivity measurement 
The optimized BiSbTe sample's in-plane thermal diffusivity is measured using the Angstrom 

technique.[5] The function generator (RIGOL DG4062) generates a periodic heat signal at one 

end of the film for this measurement in vacuum (~2 mTorr). A data acquisition device 

(Keysight 34970A) is used to measure the amplitude and phase of the resulting temperatures 

at two points along the sample. Two commercial k-type thermocouples (Omega, 5TC 40 AWG) 

are used to record the temperature; one is placed close to the heater and the other is placed 

farther away. To ensure a significant temperature oscillation at the far end of the sample, the 

frequency range is selected so that the thermal penetration depth is as large as possible while 

remaining smaller than the distance between the two thermocouples. The following equation 

is used to compute thermal diffusivity (α):  

α =
 L2

2dtln
A1

A2

 

where A1 and A2 represent the temperature phase difference and amplitudes at the near-side 

and far-side locations, respectively, and L denotes the distance between the two thermocouples. 

The formula, k = αρcp where α, cp, and ρ represent thermal diffusivity, specific heat, and 

density, respectively, can be used to calculate thermal conductivity (κ) from the measured 

thermal diffusivity (α), specific heat capacity (cp), and density (ρ). Figure S11 shows the 

variation in temperature amplitude for thermocouples located on the near and far sides.  

 

Figure S11. Near-side and far-side temperature response of the thermoocuple when the input 

peak to peak sinusoidal voltage input to the heater is 7 V and frequency 10 mHz. 

 
Furthermore, the measurement accuracy utilizing the Angstrom method was confirmed by 

measuring the thermal diffusivity of fused quartz, mica, and pure high-density polyethylene 

with a known thermal diffusivity. The measurement results agree well (<5% deviation) with 

the results reported in literature. Although measuring the thermal conductivity of thin films can 

be difficult, the Angstrom method is a tried-and-true approach that has been used to measure 

the thermal conductivity of a variety of materials, including thermoelectric films.[1,6–8]  



Supplementary Note 12. Machine learning and Bayesian optimization methods 

Data preparation: In this work, we developed a machine learning framework that integrates 

Gaussian process regression (GPR), support vector machine (SVM), and BO to maximize the 

TE power factor while maintaining printability.  

 

The GPR model captures the underlying relationships of the data through a kernel function 

and provides the probabilistic prediction for the power factors based on inputs. The inputs and 

output are standardized with zero mean and unit variance, ensuring that the model treats all 

variables equally. The kernel function in this work is given by: 

  

𝐾(𝒙, 𝒙∗|𝜽) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡2  × 𝐾Matérn(𝒙, 𝒙∗|𝒍, 𝜈) + 𝜎2, 

𝐾Matérn(𝒙, 𝒙∗|𝒍, 𝜈 ) =
1

Γ(𝜈)2𝜈−1
(

√2𝜈

𝒍
𝑑(𝒙, 𝒙∗))

𝜈

𝐾𝜈 (
√2𝜈

𝒍
𝑑(𝒙, 𝒙∗)) 

 

where 𝜽 includes constant term 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡2 = 0.9072, length scale 𝒍, smoothness parameter 

for the Matern kernel 𝜈 and 𝜎2 is the noise level for the white noise. This kernel provides GPR 

flexibility and the ability to model complex data relationships. Within the Matérn kernel, the 

Euclidean distance 𝑑(·) is computed, utilizing the modified Bessel function 𝐾𝜈( · ), and the 

gamma function Γ( · ) for its calculations. The length scale 𝒍, [1.86,4.25,5,5],influences how 

changes in the input space (TE particle loading, additive concentrations, filament spacing, 

standoff distance) affect the correlation between outputs. The smoothness parameter 𝜈 controls 

the smoothness of the resulting function, with 𝜈 = 1.5  providing a balance between 

smoothness and flexibility, allowing the model to capture complex relationships in the data. 

𝜎2 = 0.1022 accounts for noise in the dataset. The GPR model utilizes this complex kernel to 

describe a joint multivariate Gaussian distribution between training data and prediction points. 

This distribution is described by mean function 𝑚(∙), and covariance matrices derived from 

the kernel with the training data 𝑿 and prediction point 𝒙∗, denoted by:  

[
𝒇(𝑿)

𝑓(𝒙∗)
] ∼ 𝑵 ([

𝒎(𝑿)

𝑚(𝒙∗)
] , [

𝑲(𝑿, 𝑿) 𝒌(𝑿, 𝒙∗)

𝒌(𝒙∗, 𝑿) 𝑘(𝒙∗, 𝒙∗)
]) 

From this distribution, the prediction means of the power factor 𝜇∗(𝒙∗) for a given set of input 

conditions, 𝒙∗, and prediction's uncertainty 𝜎∗(𝒙∗) can be calculated analytically.  

𝜇∗(𝒙∗) = 𝐸(𝑓(𝒙∗) ∣ 𝒚) = 𝑚(𝒙∗) + 𝒌(𝒙∗, 𝑿)[𝑲(𝑿, 𝑿) + 𝜎2𝑰]−1(𝒚 − 𝒎(𝑿)) 

𝜎∗(𝒙∗) = Var (𝑓(𝒙∗) ∣ 𝒚) = 𝑘(𝒙∗, 𝒙∗) − 𝒌(𝒙∗, 𝑿)[𝑲(𝑿, 𝑿) + 𝜎2𝑰]−1𝒌(𝑿, 𝒙∗)) 

SVM: While GPR provides us with a probabilistic understanding and predictive power 

regarding the power factor, SVM models operate in parallel, focusing on the printability 

constraints in the optimization process. Two SVM models, filament 𝑔𝑓(𝒙)  and surface 

roughness 𝑔𝑟(𝒙), are used after the first round to restrict the search space using the printability 

metrics.  



 𝑔(𝒙) = 𝒘Τ𝑲(𝒙) + 𝑏 

where 𝒘 contains the coefficients of the data, indicating the importance of each feature in 

determining the position of the decision boundary. 𝑏 is the bias term that offsets the hyperplane 

from the origin to optimize class separation. By identify the hyperplane of the decision 

boundary, the problem become an optimization problem:  

min
𝑤,𝑏,𝜁

1

2
𝒘𝚻𝒘 + 𝐷 ∑ 𝜁𝑖

𝑛

𝑖=1

 

where 𝐷 is the penalty term, acting as the reciprocal of a regularization parameter, balancing 

the trade-off between the misclassification of training examples and the simplicity of the 

decision surface. 𝜁𝑖  represents the distance from the misclassified samples to the correct 

hyperplane. Details of the SVM methodology can be found in references.[9–11] 

 

For the Filament SVM, the linear kernel, 𝐾(𝒙, 𝒙∗) = 𝒙𝚻𝒙∗ is used, and for surface roughness 

SVM, a radial basis function (RBF) kernel 𝐾(𝒙, 𝒙∗) = 𝑒𝑥𝑝(−𝛾 ∥ 𝒙 − 𝒙∗ ∥2) is used, where 𝛾 

determines the impact of individual training samples on the model. The RBF kernel maps the 

input feature vectors into a higher-dimensional space, creating more flexibility to find a linear 

hyperplane in the new space. The SVM's outputs are calibrated by fitting a sigmoid function, 

enabling them to approximate probabilities. The output probability ℙ(∙)  for experimental 

condition quantifies the model's confidence in the sample's printability.  

 

BO: Expected improvement (EI) is a statistical metric that quantifies the anticipated 

enhancement in the target function, 𝑓(𝒙), with respect to the predictive distribution provided 

by GPR model.  More specifically, EI balanced exploration and exploitation by capturing the 

mean value of the improvement that each new test point might offer over the best result we 

have obtained so far. EI at point 𝑥∗ is calculated EI(𝒙)  =  𝔼[max (𝑓(𝒙∗) − 𝑓(𝒙+), 0], where 

𝑥+ is the best observation in the current dataset. In our context, it is the best power factor 

achieved. Since GP provides the distribution over functions, 𝑓(𝑥∗) is normal distribution with 

mean 𝜇∗(𝑥∗)  and variance 𝜎∗(𝑥∗) . EI can be calculated analytically under the Gaussian 

assumption:  

EI (𝒙∗) = {
(𝜇∗(𝒙∗) − 𝑓(𝒙+) − 𝜉)Φ(𝑧(𝒙∗)) + 𝜎∗(𝒙∗)𝜙(𝑧(𝒙∗)), 𝜎∗(𝒙∗) > 0

0, otherwise
 

𝑧(𝒙∗) = {

(𝜇∗(𝒙∗) − 𝑓(𝒙+) − 𝜉)

𝜎∗(𝒙∗)
, 𝜎∗(𝒙∗) > 0

0, otherwise

 

where 𝜉 is a positive number to encourage exploration, Φ and 𝜙 are the cumulative density 

function (CDF) and probability density function (PDF) of the standard normal distribution.  

 

After the first round of the power factor’s improvement, we form a constrained EI to effectively 

narrow down the search region, maintaining an acceptable printability of the material while 

maximizing the power factor. The constrained BO includes two SVM models alongside EI to 

formulate an Expected Improvement with Constraints (EIC), which can be represented as:  

 



EIC(𝒙∗) = EI(𝒙∗) × ℙ(𝑧𝑓(𝒙∗) = 1) × ℙ(𝑧𝑟(𝒙∗) = 1) 

where ℙ is the probability that the constrained is satisfied. Iteratively, as new experiments are 

continuously generated and added to the dataset, the model can be more precise and robust in 

the prediction. The entire workflow is shown in Figure S12. 

 

Figure S12. The proposed workflow integrates BO and Expert intuition. This process starts 

with the initial experiment dataset comprising 15 experiments. The overall procedure: GPR 

model training (green box), SVM models (orange box), the computation of EI and EIC (blue 

box), and new experiments candidates’ selection (yellow box). Each optimization round results 

in conducting three experiments. The recorded outputs of these experiments feed into the 

subsequent iteration to refine the decision-making process.  

 



Supplementary Note 13. The effects of X-gum concentration on the structure’s porosity 
Figure S13 shows the microstructures of printed TE samples with different X-gum 

concentrations. When the particle loadings are the same, a higher X-gum concentration always 

induces a higher porosity. 

 

 

Figure S13. The effects of X-gum concentration on the structure’s porosity. 

 

  



References 

[1] T. Varghese, C. Dun, N. Kempf, M. Saeidi-Javash, C. Karthik, J. Richardson, C. 

Hollar, D. Estrada, Y. Zhang, Adv Funct Mater 2020, 30, 1. 

[2] S. E. Yang, F. Kim, F. Ejaz, G. S. Lee, H. Ju, S. Choo, J. Lee, G. Kim, S. ho Jung, S. 

Ahn, H. G. Chae, K. T. Kim, B. Kwon, J. S. Son, Nano Energy 2021, 81, 105638. 

[3] B. Chen, M. Kruse, B. Xu, R. Tutika, W. Zheng, M. D. Bartlett, Y. Wu, J. C. Claussen, 

Nanoscale 2019, 11, 5222. 

[4] C. Ou, Cambridge University 2020. 

[5] D. H. Maylotte, P. G. Kosky, J. P. Gallo, International Communications in Heat and 

Mass Transfer 1999, 26, 1061. 

[6] M. Saeidi-Javash, K. Wang, M. Zeng, T. Luo, A. W. Dowling, Y. Zhang, Energy 

Environ Sci 2022, 15, 5093. 

[7] F. Kim, B. Kwon, Y. Eom, J. E. Lee, S. Park, S. Jo, S. H. Park, B. S. Kim, H. J. Im, M. 

H. Lee, T. S. Min, K. T. Kim, H. G. Chae, W. P. King, J. S. Son, Nat Energy 2018, 3, 

301. 

[8] J. Huang, R. B. Ambade, J. Lombardo, B. Brooks, A. Poosapati, P. Banerjee, M. 

Saeidi-Javash, Y. Zhang, D. Madan, Appl Mater Today 2024, 37, 102116. 

[9] R. M. Neal, Pattern Recognition and Machine Learning, 2007. 

[10] F. Michaud, M. Lamas, U. Lugrís, J. Cuadrado, J Neuroeng Rehabil 2021, 18, 199. 

[11] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, 

P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. Vanderplas, A. Joly, B. Holt, G. 

Varoquaux, ArXiv 2013, 1. 

  


