Supporting information for:

Understanding the evolution of ternary alloyed nanoparticles during

reversible exsolution from double perovskite oxides

Andrés López-García¹, Alfonso J. Carrillo^{1*}, Catalina E. Jiménez², Rosario Suarez Anzorena^{2,3}, Raul Garcia-Diez², Virginia Pérez-Dieste⁴, Ignacio J. Villar-Garcia^{4,5}, Ana B. Hungría⁶, Marcus Bär^{2,7,8}, José M. Serra^{1*}

¹Instituto de Tecnología Química, (Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas), Valencia, Spain

²Dept. Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein-Str.15, 12489, Berlin, Germany

³Unidad de Investigación y Desarrollo Estratégico para la Defensa (UNIDEF-CONICET-MINDEF), CITEDEF, J.B. de La Salle 4397, Buenos Aires, Argentina

⁴ALBA Synchrotron, Carrer de la Llum 2-26, 08290 Barcelona, Spain.

⁵Universidad CEU San Pablo, Facultad de Farmacia, Departamento de Química, Urbanización Montepríncipe, 28668 Boadilla del Monte, Madrid, Spain.

⁶Departamento de Ciencia de Materiales, Ingeniería Metalúrgica y Química Inorgánica, Universidad de Cádiz, Campus Río San Pedro, 11510 Puerto Real, Spain.

⁷Dept. X-ray Spectroscopy at Interfaces of Thin Films, Helmholtz-Institute Erlangen-Nürnberg

for Renewable Energy (HI ERN), Albert-Einstein-Str. 15, 12489 Berlin, Germany

⁸Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 3, 91058 Erlangen, Germany

Corresponding authors: jmserra@itq.upv.es; alcardel@itq.upv.es

Figure S1. (a) NAP-XPS chamber picture and detailed schematic with the sample holder and the perovskite oxide pellet. **(b)** Setup picture and detailed schematic for measuring in-situ XRD showing the quartz capillaries and the hot air gun.

Figure S2. (a) X-ray diffractogram of pristine $Sr_2FeCo_{0.2}Ni_{0.2}Mn_{0.1}Mo_{0.5}O_{6-\delta}$, showing the minor presence of NiO. (b) XRD diffractogram collected at 720 °C under 5% H₂/Ar flow, exhibiting a double metallic signal ("Alloy" & "Ni"). Diffractograms taken at different temperatures showing the whole 2θ range and a contour plot depicting the evolution of the observed reflections (c).

Figure S3. Temperature-time measuring protocols for the XRD (left) and NAP-XPS (right) measurements employed for in-situ analyzing the formation of exsolved ternary alloyed NPs.

Figure S4. NAP-XPS spectra of (a) Ni 2p (b) Co 2p, and (c) Fe 2p core levels acquired *in-situ* at 600 °C in pristine ("Prist.", 0.2 mbar O_2), reduced ("Red.", 0.2 mbar H_2) and re-oxidized ("Reox.", 0.2 mbar O_2) conditions. The used photon energies (to result in a similar electron kinetic energy of 150 eV) are indicated in the panels. A constant offset for better clarity is added to the spectra.

Figure S5. NAP-XPS spectra of (a) Mn 2p core level and (b) the valence band (VB) region acquired in-situ at 600 °C in pristine (0.2 mbar O_2), reduced (0.2 mbar H_2) and reoxidized (0.2 mbar O_2) conditions. E_F indicates the position of the Fermi level (E_F) in panel (b). Used photon energies are indicated in the panels. Constant offset added for clarity.

Figure S6. NAP-XPS fitted spectra of Mo 3d at the pristine (0.2 mbar O_2), reduced (0.2 mbar H_2), and re-oxidized (0.2 mbar O_2) sample states using three photon energies: 380, 630 and 930 eV. The spectra of the reduced sample show the presence of both, Mo⁵⁺ and Mo⁶⁺, whereas in the pristine and oxidized sample states only Mo⁶⁺ is present.

Figure S7. NAP-XPS spectra of the (overlapping) C 1s and Sr 3p core level regions of $Sr_2FeCo_{0.2}Ni_{0.2}Mn_{0.1}Mo_{0.5}O_{6-\delta}$ sample in the pristine sample state. Data acquired with a photon energy of 1030 eV. The visible spin-orbit doublet corresponds to the Sr 3p core level, whereas the C 1s line around 284.8 eV is not observed, indicating successful carbon-based species removal during the initial heating cleaning process.

Figure S8. Comparison of the XRD dat 2θ (°) 600 and 800 °C, after the second reduction treatment, consisting of 2 h under 5 % H₂/Ar for Sr₂FeCo_{0.2}Ni_{0.2}Mn_{0.1}Mo_{0.5}O₆. $_{\delta}$ main reflection (2 0 0) region.

Figure S9. Histograms for the size distribution of the exsolved NPs for $Sr_2FeCo_{0.2}Ni_{0.2}Mn_{0.1}Mo_{0.5}O_{6-\delta}$, after ex-situ first exsolution (a) and re-exsolution of the re-oxidized material (b). Both reduction treatments were performed at 800 °C, 4 h and under 5% H₂/Ar flow.

	NP	Co %	Fe %	Ni %
	1	31.35	46.07	22.58
Spectrum 2	2	19.49	47.35	33.16
Spectrum 1 Spectrum 3 Spectrum 5 Spectrum 4	3	30.94	43.42	25.64
Spectrum 6	4	27.15	47.85	25.00
100nm 100nm	5	23.18	49.64	27.18
	6	31.15	49.10	19.75
Figure SIU. HAADF images of $Sr_2FeCo_{0.2}Ni_{0.2}Mn_{0.1}Mo_{0.5}O_{6-\delta}$ after ex-situ re-	Mean	27.2 ± 4.9	47.3 ± 2.3	25.5 ± 4.5

exsolution of the re-oxidized material. Reduction treatment was performed at 800 °C, 4 h and under 5% H₂/Ar flow, after 24 h re-oxidation under air flow and 800 °C. The table shows the compositional fractions of the re-exsolved NPs, where Fe becomes the main component of the ternary alloy instead of Ni.