Altering Na-ion Solvation to regulate Dendrite growth for a Reversible and Stable Roomtemperature Sodium-Sulfur Battery

Chhail Bihari Soni¹, Saheb Bera², Sungjemmenla¹, Mahesh Chandra¹, Vineeth S.K.^{1,3}, Sanjay Kumar¹, Hemant Kumar^{2*} and Vipin Kumar^{1,3*}

¹Department of Energy Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India

²School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, 752050, India

³University of Queensland–IIT Delhi Academy of Research (UQIDAR), Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India

*Email- hemant@iitbbs.ac.in, vkumar@dese.iitd.ac.in

Fig. S1 Linear sweep voltammetry curve for electrolyte with additive and without additive. Na metal used as counter electrode whereas stainless steel used as working electrode

Fig. S2 Digital micrographs of a) a bare sodium metal, and b) sodium metal upon contact with NaI additive containing electrolyte. The sodium metal loses its luster; however, no apparent color change is caused by the NaI additives.

Fig. S3 EDX images of sodium metal anode top surface with additive. Here, Na and Bi, with Na comprising 68% and Bi 23% of the elemental composition on the metal anode

Fig. S4 FESEM images of Cu working electrode from half cells after 50 striping/plating cycles at 1 mA cm⁻² current density and 1 mAh cm⁻² capacity, while stripped to 1 V. (a, b) with additive (c, d) without additive

Fig. S5 Voltage vs time plots for Na//Cu half cells (a) without additive and (b) with additive at 1 mA cm^{-2} current density, 1 mA h cm^{-1} specific capacity and stripping up to 1 V.

Fig. S6 (a) Stripping plating cycling performance of Na//Na symmetric cell at 5 mA cm⁻² current density and 1 mA h cm⁻² capacity (b) at 10 mA cm⁻²

Fig. S7 Additive concentration optimization in Na//Na symmetric cell at 1 mA cm⁻² current density. Concentration is varying from 50 to 200 mM.

Table-S1	Cyclic	performance	analysis	of	Na//Na	symmetric	cells	with	different	types	of
additives.											

Cell type	Salt	Solvent	Additive	Curren	Capacit	Overpoten	Cycle
				t	y (mA h	tial (m V)	life (h)
				density	cm ⁻²)		
				(mA			
				cm ⁻²)			
Na//Na	1 M	Diglyme	100 mM	1	1	90	1600
(This	NaOTf		Bil ₃				
work)							
Na//Na ¹	1 M	EC/PC	FEC	1	1	100	100
	NaPF ₆						
Na//Na ²	1 M	Diglyme	0.033 M	2	1	38	400
	NaPF ₆		Na ₂ S ₆				
Na//Na ³	1 M	EC/DEC	0.05 M	0.5	1	100	500
	NaClO ₄		SnCl ₂				
Na//Na ⁴	4 M	DMC	1% SbF ₃	0.5	0.5	25	1000
	NaFSI						
Na//Na ⁵	1 M	FEC	0.75 %	0.5	1	500	350
	NaTFSI		NaAsF ₆				
Na//Na ⁶	2 M	DME/FE	1% SbF ₃	0.5	0.5	200	1200
	NaPF ₆	PE					
Na//Na ⁷	0.3 M	EC/PC	Acetamid	0.5	0.5	120	350
	NaPF ₆		e				
			(BSTFA)				
Na//Na ⁸	1 M	Diglyme	50 mM	1	1	25-30	1200
	NaOTf		9-				
			Fluorenon				
			e				
Na//Na ⁹	1 M	EC/PC	2%	0.5	1	400	450
	NaPF ₆		TMDT				
Na//Na ¹⁰	0.8 M	TMP/FE	DTD as	0.5	1	200	1350
	NaPF6	C (7:3)	co-solvent				

Na//Na ¹¹	1 M	EC/PC	Perfluorob	1	1	600	300
	NaPF ₆		enzene				
Na//Na ¹²	1 M	VC	N-methyl-	0.1	0.1	400	800
	NaPF ₆		N-				
			(trimethyl				
			silyl)triflu				
			oroacetam				
			ide				

Fig. S8 Na//Na symmetric cell cycling performance in ester electrolyte (EC/DMC) at 1 mA cm^{-2} current density and 1 mAh cm^{-2} capacity.

Fig. S9 In-situ optical testing for visualizing dendrite growth pattern over sodium metal anode (a) In conventional electrolyte without additive with mossy dendrites and bubble formation (b) In additive based electrolyte after a different span of time at 5 mA cm⁻² current density.

Fig. S10 XPS spectra of reference Na metal anode after cycling (a) Na 1s (b) C 1s (c) F 1s

Fig. S11 (a) XPS spectra for F 1s from sodium metal anode in reference electrolyte after cycling (b) XPS spectra for F 1s from sodium metal anode in additive based electrolyte after cycling

Element	Peak position	Peak assignment	Species
С	289.1/286.4/284.8 eV	O-C=O/C=O/C-C	NaSO ₃ CF ₃ /RC ₂ Na
0	535.6/532.5/531.1	O-H/Na-O/Na-C	NaOH/Na ₂ O/Na ₂ CO ₃
Na	1071	Na-F/Na-O	NaF/Na ₂ O
Ι	630.59/619.09	I 3d _{5/2} / I 3d _{3/2}	NaI
Bi	166.72/163.64/16 1/158.4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Na ₃ Bi / Bi ₂ O ₃
F	688.25/683.79 eV	C-F/Na-F	NaSO ₃ CF ₃ /NaF
S	170.33/169.02 eV	S 2p _{1/2} / S 2p _{3/2}	NaSO ₄

Table-S2 XPS data tabulated in the form of elements, peak position, peak assignment and possible species

Fig. S12 FESEM images of sodium metal surface after 50 plating/stripping cycles in symmetric cell configuration (a) without additive (b) with additive

Fig. S13 (a) FESEM image of as synthesized SPAN material (b-c) corresponding EDX images (e) XRD spectra of the SPAN material

Fig. S14 (a) Cyclic voltammetry curves for Na-SPAN full cells without additive (b) with additives. CV was captured at 0.1 mA s^{-1} scan rate.

Fig. S15 Rate performance analysis for Na//SPAN full cells with BiI₃, NaI and reference electrolyte. Where 1-5 corresponds to 160 mA g⁻¹, 320 mA g⁻¹, 640 mA g⁻¹, 800 mA g⁻¹, and 1000 mA g⁻¹ current density, respectively

References

- 1 M. Han, C. Zhu, T. Ma, Z. Pan, Z. Tao and J. Chen, *Chem. Commun.*, 2018, **54**, 2381–2384.
- 2 H. Wang, C. Wang, E. Matios and W. Li, *Angew. Chemie*, 2018, **130**, 7860–7863.
- 3 X. Zheng, H. Fu, C. Hu, H. Xu, Y. Huang, J. Wen, H. Sun, W. Luo and Y. Huang, *J. Phys. Chem. Lett.*, 2019, **10**, 707–714.
- 4 W. Fang, H. Jiang, Y. Zheng, H. Zheng, X. Liang, Y. Sun, C. Chen and H. Xiang, J. *Power Sources*, 2020, **455**, 227956.
- 5 S. Wang, W. Cai, Z. Sun, F. Huang, Y. Jie, Y. Liu, Y. Chen, B. Peng, R. Cao, G. Zhang and S. Jiao, *Chem. Commun.*, 2019, **55**, 14375–14378.
- 6 W. Fang, R. Jiang, H. Zheng, Y. Zheng, Y. Sun, X. Liang, H. F. Xiang, Y. Z. Feng and Y. Yu, *Rare Met.*, 2021, **40**, 433–439.
- 7 R. Jiang, L. Hong, Y. Liu, Y. Wang, S. Patel, X. Feng and H. Xiang, *Energy Storage Mater.*, 2021, **42**, 370–379.
- 8 C. Bihari, S. Bera, S. K. Vineeth, H. Kumar and V. Kumar, *J. Energy Storage*, 2023, **71**, 108132.
- 9 M. Zhu, Y. Zhang, F. Yu, Z. Huang, Y. Zhang, L. Li, G. Wang, L. Wen, H. K. Liu, S. X. Dou and C. Wu, *Nano Lett.*, 2021, 21, 619–627.
- 10 M. Zhu, L. Li, Y. Zhang, K. Wu, F. Yu, Z. Huang, G. Wang, J. Li, L. Wen, H. K. Liu, S. X. Dou, Y. Yu and C. Wu, *Energy Storage Mater.*, 2021, **42**, 145–153.
- 11 C. Zhu, D. Wu, Z. Wang, H. Wang, J. Liu, K. Guo, Q. Liu and J. Ma, *Adv. Funct. Mater.*, 2024, **34**, 2214195.
- 12 J. Ma, M. Yu, M. Huang, Y. Wu, C. Fu, L. Dong, Z. Zhu, L. Zhang, Z. Zhang, X. Feng and H. Xiang, *Small*, 2024, **20**, 1–13.