Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Atomic Doping to Enhance the p-type Behavior of BiFeO₃ Photoelectrodes for Solar H₂O₂ Production

Daye Seo,^{†a} Andrew Grieder,^{†b} Andjela Radmilovic,^{†a} Sophya F. Alamudun,^a Xin Yuan,^a Yuan

Ping,*abc and Kyoung-Shin Choi*a

a Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
b Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States

c Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, United States

[[†]] These authors contributed equally to this work.

* Correspondence and requests for materials should be addressed to Y.P. (yping3@wisc.edu) and K.-S.C. (kschoi@chem.wisc.edu).

Fig. S1 An SEM image of an as-deposited Bi/Fe film. The inset shows a photograph of the corresponding film.

Fig. S2 Simulated XRD patterns for (a) pristine BiFeO₃ (ICSD #51664) with no preferential orientation, (b) Bi_{0.93}FeO₃ with no preferential orientation, (c) Na_{0.07}Bi_{0.93}FeO₃ with no preferential orientation and (d) Na_{0.07}Bi_{0.93}FeO₃ with (110) preferential orientation.

Fig. S3 BiFeO₃ with a single Na substituted on Bi in a 120-atom supercell. (a) Projected density of states (PDOS) with spin up having positive values and spin down having negative values. (b) The norm-squared wavefunctions of the perturbed conduction band states right below the conduction band showing the character of t_{2g} of Fe atoms. The isosurface value is 1% of the maximum amplitude of the wavefunction.

Fig. S4 Norm-squared wave functions of the two hole-polarons computed using functionals HSE06 (**a** and **c** for spin up and spin down, respectively) and PBE+U (**b** and **d** for spin up and spin down, respectively). The isosurface value is 1% of the maximum amplitude of the wavefunction.

Fig. S5 Norm-squared wave functions of the perturbed conduction band states below the CBM computed using functionals HSE06 (\mathbf{a} , \mathbf{c} , and \mathbf{e}) and PBE+U (\mathbf{b} , \mathbf{d} , and \mathbf{f}). The isosurface value is 1% of the maximum amplitude of the wavefunction.