Dual-benefit strategy for developing an efficient photodetector with prompt response to UV-near IR radiations: *in situ* synthesis and crystallization through a simple onestep annealing

Miao Yu^a, Zhi-Chen Wan^a, Si-Wei Song^a, Zhi-Yong Yang^{a,b*}, Mitsuharu Suzuki^{c*,#}, Hiroko Yamada^{c*,+}

a: School of Chemical Science, University of Chinese Academy of Sciences (UCAS), 19A Yuquanlu, Beijing, 100049, P. R. China.

b: Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park,

Binzhou, Shandong Province, China, 256606

c: Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan.

#: Current address: Division of Applied Chemistry, Graduate School of Engineering,Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.

+: Current address: Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.

*Corresponding authors: yangzhiyong@ucas.ac.cn (Z.-Y. Yang); msuzuki@chem.eng.osaka-u.ac.jp (M. Suzuki); hyamada@scl.kyoto-u.ac.jp (H. Yamada).

Figure S1 Typical I_{ds}-V_{ds} (V_g=0 V) and I_{ds}-V_g curves (V_{ds}=1 V) of 3 h (a and b) and 6 h (c and d) C8-DPP-BP/G phototransisitors in dark and upon radiations. Incident power density (P_{in}) of radiations in (a-d) : P_{in} (350 nm)= 0.48 mW cm⁻², P_{in} (400 nm)= 0.63 mW cm⁻², P_{in} (450 nm)= 0.7 mW cm⁻², P_{in} (500 nm)= 0.68 mW cm⁻², P_{in} (550 nm)= 0.51 mW cm⁻², P_{in} (600 nm)= 0.37 mW cm⁻², P_{in} (650 nm)= 0.26 mW cm⁻², P_{in} (700 nm)= 0.19 mW cm⁻², P_{in} (750 nm)= 0.14 mW cm⁻², P_{in} (800 nm)= 0.11 mW cm⁻², P_{in} (850 nm)= 0.08 mW cm⁻².

Materials	R (A W ⁻¹)	D* (Jones)	Wavelength,
			Power or power density
6 h C8-DPP-BP/G	100-350	1-3*10 ¹¹	350-850 nm,
(this work)			0.08-0.7 mW cm ⁻²
G/h-BN/PTCDI -	180	10 ¹⁰	550 nm,
C13/G1			13.7 mW cm ⁻²
PTCDI-C8/G ²	~0.1ª	~10 ^{10, a}	480 nm, 0.001 mW
G/C ₆₀ /pentacene ³	~100-1000	-	405-1550 nm,
			1-0.1 mW cm ⁻²
Perovskite/G ⁴	~100ª	~10 ^{9, a}	520 nm, 0.001 mW
G/rhodamine 6G	500	-	520 nm, 0.1 mW
film/G ⁵			
C ₆₀ /G ⁶	~100-1000ª	-	360-808 nm, 100 nW
Thieno[3,4-	~100-1000ª	-	White-light emitting
b]thiophene/benzodithi			diodes, 1-0.1 mW cm ⁻²
ophene/G ⁷			
C ₆₀ /Zn	~10-1000ª	-	650 nm,
phthalocyanine/G ⁸			1-0.1 mW cm ⁻²
2,6-diphenyl	~10-100 ^b	1013	Xenon lamp,
anthracene/G ⁹			0.62 mW cm ⁻²

Table S1 R and D* values in part of current researches and this work

a: Estimated from the R (D*)-power or power density curves

b: Estimated from the $R\text{-}V_g$ curve

Figure S2

S4

0)

0.3

0.25

* (*10¹²cm*Hz^{1/2}W⁻¹)

۵

p)

Figure S2 Typical I_{ph} - V_{ds} curves at different P_{in} (mW cm⁻², V_g =0 V) and R/D*- P_{in} lines (bilogarithmical scales, V_{ds} =1 V, V_g =0 V) of 6 h C8-DPP-BP/G phototransisitors.

References

 B. Sun, G. Zhou, Y. Wang, X. Xu, L. Tao, N. Zhao, H. K. Tsang, X. Wang, Z. Chen and J.-B. Xu, *Adv. Optical Mater.*, 2021, 9, 2100158.

 Y. J. Choi, H. J. Woo, S. Kim, J. Sun, M. S. Kang, Y. J. Song and J. H. Cho, J. Ind. Eng. Chem., 2020, 89, 233-238.

J. Han, J. Wang, M. Yang, X. Kong, X. Chen, Z. Huang, H. Guo, J. Gou, S. Tao,
Z. Liu, Z. Wu, Y. Jiang and X. Wang, *Adv. Mater.*, 2018, **30**, 1804020.

4. Y. Lee, J. Kwon, E. Hwang, C.-H. Ra, W. J. Yoo, J.-H. Ahn, J. H. Park and J. H. Cho, *Adv. Mater.*, 2015, **27**, 41-46.

5. Y. Lee, H. Kim, S. Kim, D. Whang and J. H. Cho, *ACS Appl. Mater. Interfaces*, 2019, **11**, 23474-23481.

6. S. Qin, Q. Du, R. Dong, X. Yan, Y. Liu, W. Wang and F. Wang, Carbon, 2020,

167, 668-674.

7. P.-H. Chang, Y.-C. Tsai, S.-W. Shen, S.-Y. Liu, K.-Y. Huang, C.-S. Li, H.-P. Chang and C.-I. Wu, *ACS Photonics*, 2017, **4**, 2335-2344.

8. M. He, J. Han, X. Han, J. Gou, M. Yang, Z. Wu, Y. Jiang and J. Wang, *Carbon*, 2021, **178**, 506-514.

J. Liu, K. Zhou, J. Liu, J. Zhu, Y. Zhen, H. Dong and W. Hu, *Adv. Mater.*, 2018, 30, 1803655.