Supplementary Information

Evoking the Dynamic Fe- N_x Active Sites through the Immobilization of Molecular Fe Catalyst on NGQDs for the

Efficient Electroreduction of Nitrate to Ammonia

Mia Rinawati¹, Yen-Shuo Chiu¹, Ling-Yu Chang¹, Chia-Yu Chang², Wei-Nien Su^{2,3}, Ni Luh Wulan Septiani^{3,4}, Brian Yuliarto⁴, Wei-Hsiang Huang⁵, Jeng-Lung Chen⁵, and Min-Hsin Yeh^{1,3*}

¹ Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan

² National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan

³ Research Center for Nanotechnology Systems, National Research and Innovation

Agency (BRIN), Kawasan Puspiptek, Serpong, South Tangerang 15314, Indonesia

⁴ Advanced Functional Materials Laboratory, Department of Engineering Physics, Institute of Technology Bandung (ITB), B233andung, 40132, Indonesia

⁵ National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan

*Corresponding author: Tel.: +886-2-2737-6643; E-mail: <u>mhyeh@mail.ntust.edu.tw</u>

	XPS atomic composition (%)				
Electrocatalysts —	С	0	Ν	Fe	
NGQDs	38.7	57.9	3.4	-	
NGQDs-Fe (0.1 M)	45.9	49.3	3.9	0.9	
NGQDs-Fe (0.25 M)	46.6	48.2	4.8	0.4	

·Fe

Electrocatalysts –	XPS atomic composition (%)			
	С	Ο	Fe	Ν
N3-Fe	46.4	48.6	1.7	4.3
N5-Fe	51.4	41.3	1.2	6.1
N8-Fe	45.9	49.3	0.9	3.9
N10-Fe	48.8	46.7	1.1	3.4

Table S2XPS atomic composition of the nitrogen-optimized NGQDs-Fe.

Flootroootolysts	N atomic composition (%)				
Electrocatarysis	Pyridinic N	Fe–N ^x	Pyrrolic N	Graphitic N	
N3-Fe	20.1	26.0	28.5	25.4	
N5-Fe	18.9	26.8	30.7	23.6	
N8-Fe	28.4	32.6	21.2	17.8	
N10-Fe	21.7	27.1	28.8	22.4	

Table S3Nitrogen atomic composition of the optimized NGQDs-Fe

Sample	Electrolyte	Yield	Faradaic Efficiency	Ref.
Fe SAC	0.1 M K ₂ SO ₄ +0.5 M KNO ₃	20 000 μ g h ⁻¹ mg _{cat} ⁻¹	NH ₃ , ~75%	[1]
Fe-SAs/g- C ₃ N ₄	$0.1 \text{ M Na}_2 \text{SO4} + 50 \text{ mg L}^{-1} \text{NO}_3^{-1}$	_	NH ₃ , 98.6%	[2]
Fe SAC	0.1 M K ₂ SO ₄ + 0.5 M KNO ₃	$46 \text{ mg h}^{-1} \text{ mg}_{\text{cat}}^{-1}$	NH ₃ , 92%	[3]
Fe-Ppy SAC	0.1 M KOH + 0.1 M KNO ₃	$2.75 \text{ mg NH}_3 \text{ h}^{-1} \text{ cm}^{-2}$	NH ₃ , ~100%	[4]
Ru-SAC	0.1 M KOH + 0.1 M KNO ₃	$0.69 \text{ mmol h}^{-1} \text{ cm}^{-2}$	NH ₃ , 72.8%	[5]
Fe/Cu-HNG	1 M KOH + 0.1 M KNO ₃	$1.08~{\rm mmol}~{\rm h}^{-1}~{\rm mg}^{-1}$	NH ₃ , 92.51%	[6]
ISAA In- Pdene	0.5 M Na ₂ SO ₄ + 100 mM NaNO ₃	$28.06 \text{ mg } h^{-1} \text{ mg}_{Pd}^{-1}$	NH ₃ , 87.2%	[7]
Cu–N–C	0.1 M KOH + 0.1 M KNO ₃	$4.5 \text{ mg cm}^{-2} \text{ h}^{-1}$	NH ₃ , 84.7%	[8]
Cu SAC	$0.5 \text{ M Na}_2 \text{SO}_4 + 5 \text{ mM NO}_3^-$	$66 \mu\mathrm{mol}\mathrm{h}^{-1}\mathrm{cm}^{-2}$	NH ₃ , 85.5%	[9]
NGQDs- Fe/G	0.1 M KOH + 0.1 M KNO ₃	$15.9 \text{ mmol h}^{-1} \text{ cm}^{-2}$	NH ₃ , 93%	This work

Table S4NO3RR activity comparison of Fe catalyst reported in the literatures.

Figure S1 (a). Illustration of the synthesis process of the NGQDs, (b). TEM images, and (c). PL excitation-emission-intensity spectra

Figure S2 FTIR spectra of NGQDs, Fe(acac)₂, and NGQDs-Fe.

Figure S3 XPS (a). survey scan spectra, and high resolution spectra of (b). C 1s, (c).Fe2p,and(d).O1sofNGQDs-Fe

Figure S4. X-ray absorption near-edge structure (NEXAFS) spectra of (a). C K edge and (b). O K edge of NGQDs and NGQDs-Fe

Figure S5 (a). TEM image og NGQDs-Fe, and (c). NO_3 -RR polarization curves of the f-Graphene with and without the presence of the NO_3^- ions.

Figure S6 NO₃⁻ optimization. The polarization curves of the NGQDs-Fe in 0.1 M KOH solution under various KNO₃ concentration.

Figure S7 (a). LSV curves of NGQDs with and without the presence of the NO_3^- ions, (b). Chronoamperometry curves at potentials of -0.8 V for 1 h in 0.1 M KOH with 0.1 M NO_3^- , (c). NH₃ UV–Vis absorption spectra of NGQDs, and (d). FE and yield rate of NH₃ and NO_2^-

Figure S8 XPS (a). Full-scan spectra, (b). High-resolution spectra of NGQDs-Fe (0.25 M), and (c). LSV curves of the NGQDs-Fe (0.1 M) and (0.25 M) in 0.1 M KOH with 0.1 M NO_3^-

Figure S9 Chronoamperometry curves of NGQDs-Fe across range of potential for 1 h in 0.1 M KOH with 0.1 M NO_3^-

Figure S10 NH3 and NO2⁻ assay using UV-Vis. (a). NH3 absorption spectra of NH4Clin different concentration and (b) corresponding calibration curve for NH3. (c). NO2⁻absorption spectra of NaNO2 in different concentration and (b) correspondingcalibrationcurveforNO2⁻.

Figure S11 UV-Vis quantification. (a). NH_3 absorption spectra, and (b). NO_2^- absorption spectra of NGQDs-Fe across potential, from -0.3 to -1.0 V.

Figure S12 NH₃ concentration evolving profile (a). Chronoamperometry curves of NGQDs-Fe in a continuous cycle in 0.1 M KOH with 0.1 M NO_3^- (b). UV-Vis NH₃ absorption spectra of NGQDs-Fe across cycle

Figure S13 NH₄⁺ **quantification using NMR** (a) ¹H NMR spectra of NH₄⁺ ions with different concentrations. Maleic acid (fixed concentration) was used as the external standard, (b). corresponding calibration curves

Figure S14 Enlarged *in situ* Raman spectra of the NGQDs-Fe at a different applied potential under 0.1 M of KOH and 0.1 M KNO₃

Figure S15. XPS full-scan spectra of the as-synthesized N3-Fe, N5-Fe, N8-Fe, and N10-Fe.

Figure S16. XPS core-level spectra of (a) C 1s, and (b) O 1s of N3-Fe.

Figure S17. XPS core-level spectra of (a) C 1s, and (b) O 1s of N5-Fe.

Figure S18. XPS core-level spectra of (a) C 1s, and (b) O 1s of N8-Fe.

Figure S19 Chronoamperometry curves of the as-synthesized N3-Fe, N5-Fe, N8-Fe, N10-Fe in 0.1 M KOH with 0.1 M NO_3^-

Figure S20 UV-Vis absorption spectra of NH_3 at (a) -0.7 V, and (b). -0.8 V applied potential collected from N3-Fe, N5-Fe, N8-Fe, and N10-Fe.

References

 Z.-Y. Wu, M. Karamad, X. Yong, Q. Huang, D.A. Cullen, P. Zhu, C. Xia, Q. Xiao, M. Shakouri, F.-Y. Chen, J.Y. Kim, Y. Xia, K. Heck, Y. Hu, M.S. Wong, Q. Li, I. Gates, S. Siahrostami, H. Wang, Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst, Nature Communications 12(1) (2021) 2870.

[2] Q. Song, M. Li, X. Hou, J. Li, Z. Dong, S. Zhang, L. Yang, X. Liu, Anchored Fe atoms for NO bond activation to boost electrocatalytic nitrate reduction at low concentrations, Applied Catalysis B: Environmental 317 (2022) 121721.

[3] W.-D. Zhang, H. Dong, L. Zhou, H. Xu, H.-R. Wang, X. Yan, Y. Jiang, J. Zhang, Z.-G. Gu, Fe single-atom catalysts with pre-organized coordination structure for efficient electrochemical nitrate reduction to ammonia, Applied Catalysis B: Environmental 317 (2022) 121750.

[4] P. Li, Z. Jin, Z. Fang, G. Yu, A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate, Energy & Environmental Science 14(6) (2021) 3522-3531.

[5] Z. Ke, D. He, X. Yan, W. Hu, N. Williams, H. Kang, X. Pan, J. Huang, J. Gu, X. Xiao, Selective NOx– Electroreduction to Ammonia on Isolated Ru Sites, ACS Nano 17(4) (2023) 3483-3491.

[6] S. Zhang, J. Wu, M. Zheng, X. Jin, Z. Shen, Z. Li, Y. Wang, Q. Wang, X. Wang, H. Wei, J. Zhang, P. Wang, S. Zhang, L. Yu, L. Dong, Q. Zhu, H. Zhang, J. Lu, Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia, Nature Communications 14(1) (2023) 3634.

[7] M. Xie, S. Tang, Z. Li, M. Wang, Z. Jin, P. Li, X. Zhan, H. Zhou, G. Yu, Intermetallic Single-Atom Alloy In–Pd Bimetallene for Neutral Electrosynthesis of Ammonia from Nitrate, Journal of the American Chemical Society 145(25) (2023) 13957-13967.

[8] J. Yang, H. Qi, A. Li, X. Liu, X. Yang, S. Zhang, Q. Zhao, Q. Jiang, Y. Su, L. Zhang, J.-F. Li, Z.-Q. Tian, W. Liu, A. Wang, T. Zhang, Potential-Driven Restructuring of Cu Single Atoms to Nanoparticles for Boosting the Electrochemical Reduction of Nitrate to Ammonia, Journal of the American Chemical Society 144(27) (2022) 12062-12071.

[9] Y.-T. Xu, M.-Y. Xie, H. Zhong, Y. Cao, In Situ Clustering of Single-Atom Copper Precatalysts in a Metal-Organic Framework for Efficient Electrocatalytic Nitrate-to-Ammonia Reduction, ACS Catalysis 12(14) (2022) 8698-8706.