Supporting Information

Ultra-temperature and High Thermal Stability Thermosensitive High-Entropy Ceramics up to 1873 K

Yafei Liu^{a, b}, Hao Sun^{a,b}, Ruifeng Wu^{a, b}, Aimin Chang^a, Bo Zhang^{a,*}

^a State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Electronic Information Materials and Devices; Xinjiang Technical Institute of Physics & Chemistry of CAS, Urumqi 830011, China

^b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

*E-mail address: zhangbocas@ms.xjb.ac.cn

*Present address: Xinjiang Technical Institute of Physics & Chemistry of CAS, Urumqi 830011, China

Table S1 . Chemical formula, configuration entropy $(\Delta S_{\text{config}})$ and size disorder (δ) of Yb ₃ NbO ₇ -based
ceramics.

Chemical Formula	Configurational Entropy ($\Delta S_{ m config}$)	Size disorder (δ)
Yb ₃ NbO ₇	/	/
Yb ₃ TaO ₇	/	/
Yb ₃ (VNbTa) _{1/3} O ₇	$\Delta S_{ m config} = 1.10 \ m R$	$\boldsymbol{\delta}$ = 7.75 %
(HoErTmYbLu) _{3/5} NbO ₇	$\Delta S_{ m config} = 1.53 \ m R$	$\boldsymbol{\delta}$ =1.38 %

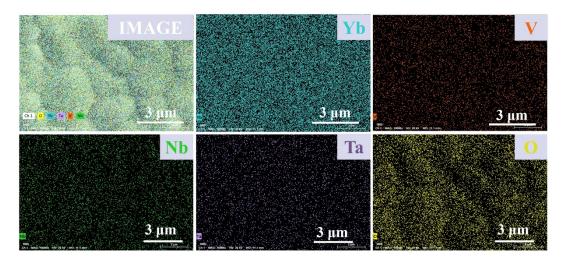
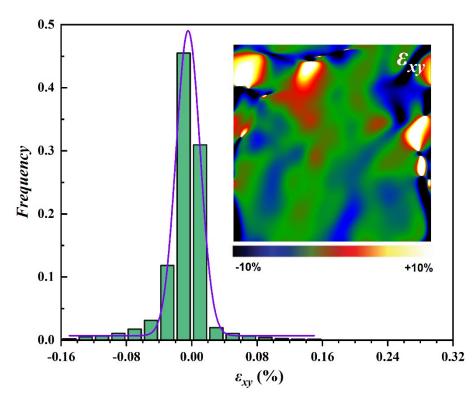
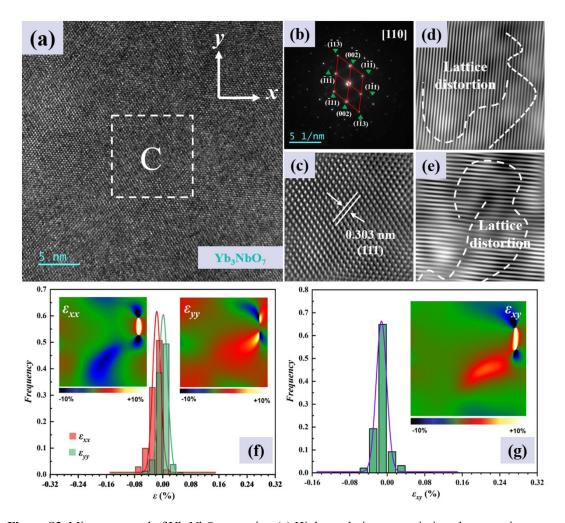




Figure S1. Elemental distribution mapping of $Yb_3(V_{1/3}Nb_{1/3}Ta_{1/3})O_7$.

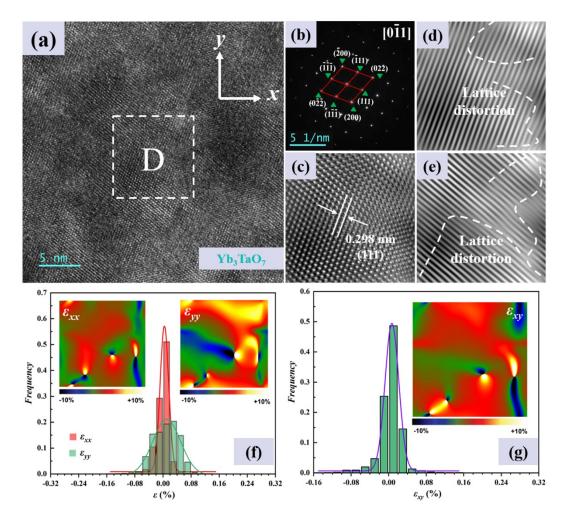

•

Figure S2. The shear strains along the *xy* directions based on geometric phase analysis (GPA) in $Yb_3(V_{1/3}Nb_{1/3}Ta_{1/3})O_7$. The color scale in Figure represents the change in strain intensity from -10% (compression) to 10% (tension).

Figure S3. Microstructural of Yb_3NbO_7 ceramics. (a) High-resolution transmission electron microscopy (HRTEM). (b) Selected area electron diffraction (SAED). (c-e) The inverse fast Fourier transform (IFFT) analysis of region C. (f) The normal strains along the *xx* and *yy* directions based on geometric phase analysis (GPA). (g) The shear strains along the *xy* directions based on GPA.

Figure S4. Microstructural of Yb_3TaO_7 ceramics. (a) High-resolution transmission electron microscopy (HRTEM). (b) SAED. (c-e) The IFFT analysis of region D. (f) The normal strains along the *xx* and *yy* directions and (g) the shear strains along the *xy* directions based on GPA.

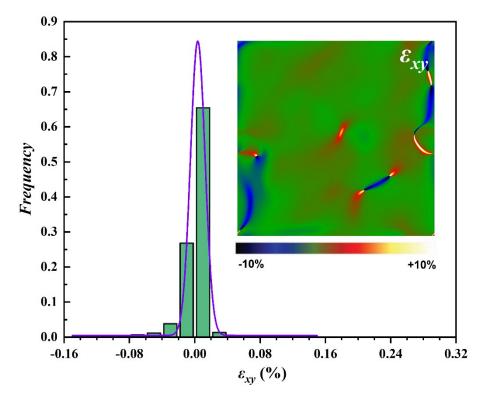


Figure S5. The shear strains along the xy directions based on GPA in (Ho_{0.2}Er_{0.2}Tm_{0.2}Yb_{0.2}Lu_{0.2})₃NbO₇.