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Experimental section

The NLNMTO material was prepared by a traditional sol-gel method. A precursor solution was firstly 

prepared by dissolving 4.625 mmol Ni(CH3COO)2·4H2O (Aladdin, 99.9%), 2.6875 mmol Mn(CH3COO)2·4H2O 

(Kermel, 99.9%), 0.25 mmol CH3COOLi·2H2O (Kermel, 99.9%), 10.5 mmol CH3COONa (Aladdin, 99.0%), and 

10 mmol citric acid (Aladdin, 99.5%) into 30 mL distilled water, followed by adding 4 mL ethanol solution 

containing 2.4375 mmol isopropyl titanate. The solution was stirred at room temperature for 2 h and then 

evaporated at 80 °C until a gel was obtained. The gel was further dried at 120 °C in the oven for 10 h. After 

being sufficiently milled, the powder was heated at 600 °C for 4 h and calcined at 1000 °C for 12 h. The 

NaNi1/2Mn1/2O2 and Ti-doped NaNi1/2Mn1/4Ti1/4O2 materials were prepared by the same synthesis method 

mentioned above, but the difference lies in whether isopropyl titanate and lithium acetate are added to 

the precursor solution.

Crystal structure of the material was confirmed with X-ray diffraction (XRD, X'Pert Powder with a Cu Kα 

radiation source), and XRD patterns were recorded in the angle range of 10-80° at a scanning rate of 8° 

min-1. Morphologies of the materials was investigated using scanning electron microscopy (ZEISS Gemini 

300) and transmission electron microscope (Japan JEOL, JEM-F200). The molar ratio of elements in the 

material was studied by Inductively-coupled plasma analysis (ICP-OES: Thermo Fisher iCAP PRO). Oxidation 

states of elements in the material was analysed by X-ray photoelectron spectroscopy (Thermo Scientific 

K-Alpha spectrometer equipped with an Al Kα achromatic X-ray source). 

Before electrochemical measurements, working electrode was fabricated by mixing active material, 

conductive agent (Super P), and poly(vinyl difluoride) (PVDF) binder as a weight ratio of 7: 2: 1. The loading 

mass of active material in electrodes was 2.0–3.0 mg cm-2. CR2032 coin-type cells was assembled in an 

argon-filled glove box (H2O, O2 ˂ 0.1 ppm) with the working electrode, sodium sheet as counter electrode, 

glass fiber (Whatman, GF/F) as separator, and 1 M NaClO4/EC-PC (1:1, 5wt% FEC) as electrolyte. 

Charge/discharge measurements were performed on a Land test system (CT2001A) in the potential range 

of 1.5–4.2 V. Galvanostatic intermittent titration technique (GITT) was carried out by alternately charging 

10 min and resting 30 min at the current of 10 mA g-1. Electrochemical workstation (VERSASTAT4) was 

used to carry on cyclic voltammetry at a scan rate of 0.1 mV s-1. The electrochemical impedance 

spectroscopy (EIS) was measured on the electrochemical workstation (VERSASTAT4), with a perturbation 

potential of 10 mV in the frequency range of 10 kHz and 10 mHz.
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Figure S1. (a) XRD, (b-e) Galvanostatic charge/discharge profile at the current of 10 mA g-1, (f) Cycling 

performance of NaLixNi(1/2-3x/2)Mn(1/4+3x/4)Ti(1/4-x/4)O2 (0≤x≤0.1) materials.

Figure S2. EDS mapping of the NLNMTO material
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Figure S3. Apparent diffusion coefficients of Na+ ions of (a) NNMO, (b) NNMTO and (c) NLNMTO electrodes
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Figure S4. EIS spectra of NNMO, NNMTO and NLNMTO electrodes at 3.0 V.

Table S1. The value of Rf and Rct calculated from Figure S4

electrode Rf(Ω) Rct(Ω)

NNMO 748.0 754.7

NNMTO 411.4 827.3

NLNMTO 266.9 826.1
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Figure S5. Rate performance of NNMO, NNMTO and NLNMTO electrodes.



Table S2. Performance comparison of our material and reported cathode materials

Materials Capacity (mAh g-1) Capacity retention

Na0.993Ni0.382Mn0.428Cu0.098Sn0.049O2
[1]

NaNi0.45Al0.1Mn0.45O2
[2]

Na0.9Ni0.2Fe0.2Co0.2Mn0.2Ti0.15Cu0.05O2
[3]

NaCu0.1Ni0.3Fe0.2Mn0.2Ti0.2O2
[4]

115.3 at 50 mA g−1

105 at 17 mA g−1

117.8 at 22 mA g−1

130.0 at 13 mA g−1

80.7% after 500 cycles

86.2% after 200 cycles

70.7% after 1000 cycles

71% after 500 cycles

Na0.93Li0.12Ni0.25Fe0.15Mn0.48O2
[5] 130.1 at 40 mA g−1 82.8% after 200 cycles

NaNi0.25Fe0.455Al0.045Mn0.25O2
[6] 131.7 at 24 mA g−1 81.6% after 100 cycles

NaNi1/3Fe1/3Mn1/3O2[7] 135.0 at 12 mA g−1 80% after 300 cycles

NaNi0.5Mn0.45Sn0.05O2
[8] 126.1 at 12 mA g−1 76.2% after 450 cycles

NaFe0.2Cu0.1Ni0.2Mn0.3Ti0.2O2
[9] 121.0 at 10 mA g−1 83.8% after 200cycles

NaFe0.2Co0.2Ni0.2Ti0.2Sn0.1Li0.1O2
[10] 112.7 at 10 mA g−1 81% after 100cycles

NaNi0.3Fe0.4Mn0.3O2
[11] 124.0 at 24 mA g−1 76% after 100cycles

This work 153.1 at 10 mA g−1 83% after 200cycles
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