Supporting Information

Modulating the porosity of N-doped carbon materials for

enhanced CO₂ capture and methane uptake

Nawaf Albeladi,^{1,2} and Robert Mokaya^{1,3*}

¹School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U. K.

²Taibah University, Yanbu Al Bahr, 46423, Saudi Arabia

³Department of Chemistry, Dainton Building, The University of Sheffield, Brook Hill, Sheffield S3 7HF, U. K.

E-mail: r.mokaya@nottingham.ac.uk (R. Mokaya)

	<u>CO₂ uptake (mmol/g)</u>		Reference
	1 bar	0.15 bar	
Sawdust-derived activated carbon	4.8	1.2	1
Petroleum pitch-derived activated carbon	4.55	~1.0	2
Activated carbon spheres	4.55	~1.1	3
Phenolic resin activated carbon spheres	4.5	~1.2	4
Fungi-derived activated carbon	3.5	~1.0	5
Chitosan-derived activated carbon	3.86	~1.1	6
Polypyrrole derived activated carbon	3.9	~1.0	7
Soya bean derived N-doped activated carbon	4.24	1.2	8
N-doped ZTCs	4.4	~1.0	9
Activated templated N-doped carbon	4.5	1.4	10
Polyaniline derived activated carbon	4.3	1.38	11
N-doped activated carbon monoliths	5.14	1.25	12
Activated hierarchical N-doped carbon	4.8	1.4	13
Activated N-doped carbon from algae	4.5	~1.1	14
Compactivated carbons from sawdust	5.8	2.0	15
Fern-derived activated carbon	5.67	~1.7	16
Compactivated carbons from polypyrrole	5.5	2.1	17
Clove-derived activated carbon	5.4	1.4	18
Potassium oxalate-activated carbon from date seed	5.0	1.8	19
Potassium phthalimide derived carbons	5.2	1.7	20

Table S1. CO_2 uptake capacity of various porous carbons at 25 °C and 0.15 bar or 1 bar (The data in the table is adapted from reference 29 in main manuscript).

References

- 1. M. Sevilla and A. B. Fuertes, *Energy Environ. Sci.*, 2011, 4, 1765.
- 2. J. Silvestre-Albero, A. Wahby, A. Sepulveda-Escribano, M. Martinez-Escandell, K. Kaneko and F. Rodriguez-Reinoso, *Chem. Commun.*, 2011, **47**, 6840.
- 3. N. P. Wickramaratne and M. Jaroniec, ACS Appl. Mater. Interfaces, 2013, 5, 1849.
- 4. N. P. Wickramaratne and M. Jaroniec, J. Mater. Chem. A, 2013, 1,112.
- 5. J. Wang, et al, J. Mater. Chem., 2012, 22, 13911.
- 6. X. Fan, L. Zhang, G. Zhang, Z. Shu, J. Shi, *Carbon*, 2013, **61**, 423.
- 7. M. Sevilla, P. Valle-Vigon and A. B. Fuertes, *Adv. Funct. Mater.*, 2011, 21, 2781.
- 8. W. Xing, et al, *Energy Environ. Sci.*, 2012, **5**, 7323.
- 9. Y. D. Xia, R. Mokaya, G. S. Walker and Y. Q. Zhu, Adv. Energy Mater., 2011, 1, 678.
- 10. Y. Zhao, L. Zhao, K. X. Yao, Y. Yang, Q. Zhang and Y. Han, J. Mater. Chem., 2012, 22, 19726.
- 11. Z. Zhang, et al, Phys. Chem. Chem. Phys., 2013, 15, 2523
- 12. M. Nandi, et al, Chem. Commun., 2012, 48, 10283.
- 13. D. Lee, C. Zhang, C. Wei, B. L. Ashfeld and H. Gao, J. Mater. Chem. A, 2013, 1, 14862.
- 14. M. Sevilla, C. Falco, M. M. Titirici and A. B. Fuertes, RSC Advances, 2012, 2, 12792.
- 15. N. Balahmar, A. C. Mitchell, and R. Mokaya, Adv. Energy Mater., 2015, 5, 1500867.
- 16. J. Serafin, K. Kiełbasa and, B. Michalkiewicz, Chem. Eng. J., 2022, 429, 131751.
- 17. B. Adeniran and R. Mokaya, Nano Energy, 2015, 16, 173.
- 18. I. Alali and R. Mokaya, *Energy Environ. Sci.*, 2022, 15, 4710.
- 19. A. Altwala and R. Mokaya, RSC Adv., 2022, 12, 20080.
- 20. I. Alali and R. Mokaya, J. Mater. Chem. A, 2023, 11, 6952-6965.

Sample	Density	65 bar (g g ⁻¹) (cm ³ cm ⁻³)		80 bar		100 bar		Reference
Sample	$(g \text{ cm}^{-3})$			$(g g^{-1})$	$(g g^{-1}) (cm^3 cm^{-3})$		$(\mathrm{cm}^3\mathrm{cm}^{-3})$	
DSM2800-1	0.65	0.25	230	0.27	248	0.29	266	This work
DSM4700-1	0.59	0.27	219	0.29	237	0.31	256	This work
DSU4800-1	0.41	0.35	197	0.39	217	0.42	239	This work
PPI-800-2	0.92	0.21	270	0.22	287	0.25	309	1
PPI-900-2	0.87	0.23	283	0.25	303	0.28	331	1
PPI-1000-2	0.83	0.25	288	0.27	311	0.29	338	1
CHCC2800	0.82	0.26	293	0.28	315	0.30	339	2
CHCC4700	0.75	0.27	282	0.29	306	0.32	334	2
CHCC4800	0.58	0.32	258	0.35	279	0.38	309	2
CNL4800	0.67	0.26	241	0.29	269	0.31	291	3
PPYCNL124	0.52	0.30	217	0.33	238	0.36	260	3
PPYCNL214	0.36	0.36	183	0.41	204	0.46	229	3
ACDS4800	0.69	0.25	243	0.27	262	0.29	282	3,4
PPYSD114	0.47	0.32	211	0.35	231	0.39	254	4
AX-21 carbon	0.487	0.30	203	0.33	222	0.35	238	5
HKUST-1	0.881	0.21	263	0.22	272	0.23	281	5
Ni-MOF-74	1.195	0.15	259	0.16	267	0.17	277	5
Al-soc-MOF-1	0.34	0.41	197	0.47	222			6
MOF-210	0.25	0.41	143	0.48	168			7
NU-1500-Al	0.498	0.29	200	0.31	216	0.34	237	8
NU-1501-Fe	0.299	0.40	168	0.46	193	0.52	218	8
NU-1501-Al	0.283	0.41	163	0.48	190	0.54	214	8
monoHKUST-1	1.06	0.17	261	0.18	278	0.18	275	9
monoUiO-66_D	1.05	0.14	210	0.17	245	0.20	296	10

Table S2. Methane uptake for the best performing N-doped activated carbons compared to selected benchmark MOFs and carbons reported in the literature. Volumetric uptake of powder

MOFs is calculated based on crystallographic density rather than packing density.

References

- 1. I. Alali and R. Mokaya, J. Mater. Chem. A, 2023, 11, 6952-6965.
- 2. I. Alali and R. Mokaya, Energy Environ. Sci., 2022, 15, 4710.
- 3. A. Altwala and R. Mokaya, J. Mater. Chem. A, 2022, 10, 13744.
- 4. A. Altwala and R. Mokaya, Energy Environ. Sci., 2020, 13, 2967.
- 5. J. A. Mason, M. Veenstra and J. R. Long, Chem. Sci., 2014, 5, 32.
- 6. D. Alezi, et al, J. Am. Chem. Soc., 2015, 137, 13308.
- 7. H. Furukawa, et al, Science 2010, **329**, 424–428.
- 8. Z. Chen, et al, Science, 2020, 368, 297.
- T. Tian, Z. Zeng, D. Vulpe, M. E. Casco, G. Divitini, P. A. Midgley, J. Silvestre-Albero, J. C. Tan, P. Z. Moghadam and D. Fairen-Jimenez, *Nat. Mater.*, 2018, 17, 174.
- 10. B. M. Connolly, M. Aragones-Anglada, J. Gandara-Loe, N. A. Danaf, D. C. Lamb, J. P. Mehta, D. Vulpe, S. Wuttke, J. Silvestre-Albero, P. Z. Moghadam, A. E. H. Wheatley and

D. Fairen-Jimenez, Nat. Commun., 2019, 10, 2345.

Table S3: Methane uptake working capacity for N-doped activated carbons compared to selected benchmark MOFs and carbons reported in the literature.

Sample	65 bar		80 bar		100 bar		Reference
	$(g g^{-1}) (cm^3 cm^{-3})$		$(g g^{-1}) (cm^3 cm^{-3})$		$(g g^{-1}) (cm^3 cm^{-3})$		
DSM2800-1	0.17	159	0.19	177	0.21	195	This work
DSM4700-1	0.20	159	0.22	177	0.24	196	This work
DSU4800-1	0.27	151	0.31	171	0.34	193	This work
PPI-800-2	0.13	174	0.14	190	0.16	212	1
PPI-900-2	0.15	183	0.17	203	0.19	231	1
PPI-1000-2	0.17	199	0.19	222	0.21	249	1
CHCC2800	0.18	200	0.20	222	0.22	246	2
CHCC4700	0.20	210	0.22	234	0.25	262	2
CHCC4800	0.25	197	0.28	218	0.31	248	2
CNL4800	0.19	182	0.22	202	0.24	224	3
PPYCNL124	0.23	167	0.26	188	0.29	209	3
PPYCNL214	0.29	146	0.34	167	0.39	192	4
ACDS4800	0.18	171	0.20	189	0.22	209	3,4
PPYSD114	0.25	162	0.28	182	0.32	205	4
AX-21 carbon	0.23	155	0.26	174	0.28	190	5
HKUST-1	0.15	179	0.16	198	0.17	207	5
Ni-MOF-74	0.08	148	0.09	152	0.10	162	5
Al-soc-MOF-1	0.36	176	0.42	201			6
MOF-210	0.38	134	0.45	157			7
NU-1500-A1	0.24	165	0.26	181	0.29	202	8
NU-1501-Fe	0.36	151	0.42	176	0.48	201	8
NU-1501-A1	0.37	147	0.44	174	0.50	198	8
monoHKUST-1	0.12	184	0.13	201	0.13	198	9
monoUiO-66_D	0.11	167	0.14	202	0.17	253	10

References

- 1. I. Alali and R. Mokaya, J. Mater. Chem. A, 2023, 11, 6952-6965.
- 2. I. Alali and R. Mokaya, Energy Environ. Sci., 2022, 15, 4710.
- 3. A. Altwala and R. Mokaya, J. Mater. Chem. A, 2022, 10, 13744.
- 4. A. Altwala and R. Mokaya, Energy Environ. Sci., 2020, 13, 2967.
- 5. J. A. Mason, M. Veenstra and J. R. Long, Chem. Sci., 2014, 5, 32.
- 6. D. Alezi, et al, J. Am. Chem. Soc., 2015, 137, 13308.
- 7. H. Furukawa, et al, Science 2010, **329**, 424–428.
- 8. Z. Chen, et al, Science, 2020, 368, 297.
- 9. T. Tian, Z. Zeng, D. Vulpe, M. E. Casco, G. Divitini, P. A. Midgley, J. Silvestre-Albero, J. C. Tan, P. Z. Moghadam and D. Fairen-Jimenez, *Nat. Mater.*, 2018, **17**, 174.
- B. M. Connolly, M. Aragones-Anglada, J. Gandara-Loe, N. A. Danaf, D. C. Lamb, J. P. Mehta, D. Vulpe, S. Wuttke, J. Silvestre-Albero, P. Z. Moghadam, A. E. H. Wheatley and D. Fairen-Jimenez, *Nat. Commun.*, 2019, **10**, 2345.

Supporting Figure 1. Photograph of the attempted activation of melamine and urea.

Supporting Figure 2. The N/C atomic ratio of activated carbons as a function of the activation temperature.

Supporting Figure 3. TGA curves of N-doped activated carbons prepared at KOH/ACDS ratio of 2 or 4 at 600, 700 or 800 °C and melamine/ACDS ratio of 1.

Supporting Figure 4. TGA curves of N-doped activated carbons prepared at 800 °C and KOH/ACDS ratio of 4 and various amounts of melamine or urea.

Supporting Figure 5. Powder XRD patterns of raw date seeds (Raw-DS) and air-carbonised dated seeds (ACDS).

Supporting Figure 6. Powder XRD patterns of N-doped carbons activated at KOH/ACDS ratio 2 or 4 with melamine or urea as dopants.

Supporting Figure 7. SEM images of selected N-doped activated carbons.

Supporting Figure 8. TEM images of selected N-doped activated carbons.

Supporting Figure 9. Excess CO₂ and methane uptake of N-doped carbons.