Supporting Information

The in-situ growth of atomically dispersed Ni species on CeO₂ during lowtemperature CH₄/CO₂ reforming

Hui Wang^{a,*}, Yansu Hu^a, Alexander Adogwa,^b Ming Yang^{b,*}, Tong-Bu Lu^{a,*}

^a Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science

and Engineering, Tianjin University of Technology, Tianjin 300384, China

^b Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, 29634,

USA

Corresponding Author

*wanghui2020@email.tjut.edu.cn; *myang3@clemson.edu; *lutongbu@tjut.edu.cn

Fig. S1. The physical structures of Ni/CeO₂ catalysts with different Ni species. (a) BET surface area, (b) N_2 adsorption-desorption curves, and (c) the pore distribution curves of the four Ni/CeO₂ catalysts.

Fig. S2. XRD patterns of the as-prepared Ni-free ceria and Ni/CeO₂ catalysts. No Ni or NiO signal was detected.

Fig. S3. XPS spectra of as-prepared Ni/CeO₂ samples. (a) Ni 2p, (b) Ce 3d, and (c) O 1*s* spectra of Ni/CeO₂ samples with different Ni loading amount.

Fig. S4. Aberration-corrected HAADF-STEM images for the as-prepared $1.6Ni/CeO_2$ catalyst. No obvious Ni NPs was observed. The left and right images are the two representative views.

Fig. S5. Aberration-corrected HAADF-STEM image (left) and the corresponding EDS mapping (right) for the as-prepared 1.6Ni/CeO₂ catalyst. No obvious Ni NPs was observed. The green dot represents the Ni element.

Fig. S6. Ni K-edge EXAFS (points) and curvefit (line) in k^3 weighted k-space (a, c, e) and R-space (FT magnitude and imaginary component, b, d, f). The data were phase-corrected.

Fig. S7. The H₂/CO ratios of different Ni/CeO₂ catalysts during DRM reaction. The H₂/CO ratios during the ramping and cooling down (back) process of (a) 0.5Ni/CeO₂, (b) 0.8Ni/CeO₂, (c) 1.2Ni/CeO₂, and (d) 1.6Ni/CeO₂. These H₂/CO ratios correspond to the DRM catalytic performance in Fig. 5. Reaction conditions: $[CH_4] = [CO_2] = 1\%$, balanced with N₂, contact time: 100,000 mL g_{cat}^{-1} h⁻¹.

Fig. S8. DRM stability test at 500 °C for 1.6Ni/CeO₂ catalyst (a) Conversions of CH₄ and CO₂ (b) H₂/CO ratio (Reaction conditions: $[CH_4] = [CO_2] = 1\%$, balanced with N₂, contact time: 25,000 mL gcat⁻¹ h⁻¹.)

Fig. S9. DRM reaction test for 0.1Ni/CeO_2 sample (Reaction conditions: $[CH_4] = [CO_2] = 1\%$, balanced with N₂, contact time: 25,000 mL gcat⁻¹ h⁻¹.)

Fig. S10. DRM reactivity evolution of 1.6Ni/CeO₂ catalyst at 400 °C. (a) CH₄ & CO₂ conversions (b) H₂/CO ratio. Reaction conditions: [CH₄] = [CO₂] = 1%, balanced with N₂, contact time: 100,000 mL g_{cat}⁻¹ h⁻¹.

Fig. S11. XRD patterns of the reaction-spent Ni/CeO₂ catalysts. No Ni or NiO signal was detected.

Fig. S12. XPS spectra of reaction-spent Ni/CeO₂ samples. (a) Ce 3d, and (b) O 1s spectra of Ni/CeO₂ samples with different Ni loading amount.

Fig. S13 H_2 TPR curves of the reaction-spent Ni/CeO₂ samples with different Ni loading amount.

The H₂ TPR curves below 300 °C are quite similar in shape, with all initial reduction peaks centered at 175 °C. This differs from the as-prepared counterparts, which exhibit significant discrepancy ranging from single atoms to nanoparticles (NPs) or clusters as Ni loading increases (Fig. 4). Additionally, the spent $0.5Ni/CeO_2$ shows a higher reduction temperature at the latter peak (264 °C), compared to 232 °C for the spent $1.2Ni/CeO_2$ and $1.6Ni/CeO_2$. Compared to the as-prepared samples (Fig. 4), all the reduction peaks have shifted to higher temperatures, likely due to carbon deposits. Based on the H₂ reduction attribution for the as-prepared Ni/CeO₂ catalysts (Fig. 4), where Ni NPs or clusters are preferentially reduced over single atoms, we conclude that there are still some Ni single atoms in the spent $0.5Ni/CeO_2$ sample. The spent $0.8Ni/CeO_2$ contains fewer Ni single atoms, while NPs or clusters predominate in the spent $1.2Ni/CeO_2$ and $1.6Ni/CeO_2$ catalysts.

K-cuge.						
Sample	Shell	CN	R (Å)	$\Delta E_0 (eV)$	σ^2 (Å ²)	R-factor
Ni foil	Ni-Ni	12.0	2.48 ± 0.01	6.3 ± 1.1	0.002	0.01
NiO	Ni-O	5.7 ± 0.7	2.07 ± 0.03	-9.3 ± 0.8	0.003	- 0.01
	Ni-O-Ni	13.2 ± 1.5	2.96 ± 0.02		0.005	
1.6Ni/CeO ₂	Ni-O	6.7 ± 1.2	2.02 ± 0.08	6.5 ± 2.4	0.005	0.02
	Ni-Ce	4.0	3.03 ± 0.09		0.006	
		2.0	3.13 ± 0.02		0.006	

Table S1 Fitting parameters of the curves fitted k³-weighted EXAFS analyses at Ni K-edge.

Note: Direct Ni-Ni contact does not exist in the 1.6Ni/CeO₂ sample. Amplitude reduction factor: S_0^2 : 0.79 (obtained by analyzing the known Ni foil sample); CN, coordination number; R, the distance between absorber and backscattered atoms; ΔE_0 , inner potential correction; σ^2 , Debye-Waller factor, an evaluation for thermal and structural disorders; R-factor, closeness of the fit, if \leq 0.02, consistent with broadly correct models.

Catalysts	Ni dispersion (%)		
0.5Ni/CeO ₂ -spent	51		
0.8Ni/CeO ₂ -spent	50		
1.2Ni/CeO ₂ -spent	47		
1.6Ni/CeO ₂ -spent	48		

Table S2 Ni dispersions of different Ni/CeO₂ catalysts after DRM reaction.

Note: Ni dispersion was measured by CO chemisorption, and there is a CO_2 passivation for Ce^{3+} before CO pulse in. The ratio for CO: Ni was assumed to be 1:1. These reaction-spent Ni/CeO₂ catalysts suffered from the reaction from 400 to 500 °C with an interval of 50 °C and stayed for about an hour at each temperature point.

Server les	Ni loading	TOF	Temperature	Note	
Samples	(wt. %)	(s ⁻¹)	(°C)		
0.5Ni/CeO ₂	0.5	0.046	500	Our work	
1.6Ni/CeO ₂	1.6	0.049	500		
NiCe/SiO ₂ -A	5.67	0.064	500		
Ni/SiO ₂ -A	6.75	0.045	500	1	
Ni/SiO ₂ -I	6.79	0.010	500		
Ni/CeO ₂	5	0.018	500	2	
3%-Ni/(NA-Al ₂ O ₃)	3	0.054	500		
5%-Ni/(NA-Al ₂ O ₃)	5	0.049	500	3	
10%-Ni/(NA-Al ₂ O ₃)	10	0.034	500	3	
20%-Ni/(NA-Al ₂ O ₃)	20	0.017	500		
Ni/Mg(Al)O	12	0.045	500	· – – – – – – – – – – – – – – – – – – –	
Ni-Cu/Mg(Al)O(Cu/Ni=0.25)	12	0.050	500	т	
0.5Ni/CeO ₂	0.5	0.031	450		
1.6Ni/CeO ₂	1.6	0.027	450	450 Our work	
Ni-Zr/SiO ₂	8.3	0.004	450	5	
Ni-Si/ZrO ₂	7.8	0.008	450	5	
0.5Ni/CeO ₂	0.5	0.006	400	Our work	
1.6Ni/CeO ₂	1.6	0.013	400		
Ni-Zr/SiO ₂	8.3	0.001	400	5	
Ni-Si/ZrO ₂	7.8	0.003	400	5	
Ni@SiO ₂ @CeO ₂		0.015	400	6	
Ni@SiO ₂		0.009	400		

 Table S3 TOF comparisons of various Ni-based catalysts reported in the literature and our work.

Note: TOF values were calculated from the methane conversion and based on the total loading amount of Ni atoms. Here, we didn't involve Ni dispersion to avoid any experimental error from CO or H_2 chemisorption.

References

- 1 X. Zhao, M. Lu, H. Li, J. Fang, L. Shi and D. Zhang, New J. Chem., 2017, 41, 4869–4878.
- 2 M. Li and A. C. van Veen, Appl. Catal. B Environ., 2018, 237, 641-648.
- 3 S. Zhang, T. Yang, J. Yu, W. Zhan, L. Wang, Y. Guo and Y. Guo, *New J. Chem.*, 2021, 45, 21750–21762.
- 4 K. Song, M. Lu, S. Xu, C. Chen, Y. Zhan, D. Li, C. Au, L. Jiang and K. Tomishige, *Appl. Catal. B Environ.*, 2018, **239**, 324–333.
- 5 Y. Wang, L. Yao, Y. Wang, S. Wang, Q. Zhao, D. Mao and C. Hu, ACS Catal., 2018, 8, 6495–6506.
- 6 K. Han, W. Yu, L. Xu, Z. Deng, H. Yu and F. Wang, Fuel, 2021, 291, 120182.