Supporting information

Amphiphilic Interface for Constructing Uniform Composite Solid-State

Electrolyte towards Long-Life All-Solid-State Sodium Metal Batteries

Chengyuan Peng,^a Shizhi Huang,^a Xuyang Shen,^a Jingyi Ding,^b Junrong Luo,^a Junhao

Du,^a Zongpu Xia,^a Xinxiang Zhang^a and Jitao Chen*^a

^a National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

^b Suzhou Laboratory, Suzhou, China.

† Chengyuan Peng and Shizhi Huang contributed equally to this work.

Scheme S1 Oxidative ring-opening self-polymerization of dopamine.

Fig. S1 (a) XRD pattern of sol-gel synthesized NZSP filler; (b) SEM morphology and elements distribution of synthesized NZSP filler; (c) Nyquist plots of synthesized NZSP pellet.

Fig. S2 ATR-FTIR spectra of PDA@NZSP and NZSP.

Fig. S3 Contact angle between the PEO acetonitrile solution and NZSP pellet (a) or PDA@NZSP pellet (b).

Fig. S4 Optical images of PCSE composite solid-state electrolyte membrane.

Fig. S5 TGA curves of CSE and PCSE in the temperature range from 25-600°C.

Fig. S6 Nyquist plots of SUS|PCSE|SUS (a, b) and SUS|CSE|SUS (c, d) in the temperature range from 30-75°C.

Fig. S7 SEM morphology of the sodium metal anode disassembled from Na|CSE|Na (a) and Na|PCSE|Na (b) after 50 deposition/dissolution cycles.

Fig. S8 (a) Charge/discharge profiles of Na|PCSE|NVP and Na|CSE|NVP at 10th cycle with a rate of 1 C; (b) charge/discharge profiles of Na|PCSE|NVP with different number of cycles.

Fig. S9 CV curves of Na|PCSE|NVP and Na|CSE|NVP with different scanning rates.

Fig. S10 Charge/discharge profiles of Na|CSE|NVP with different rates.

Fig. S11 Discharge profiles of Na|PCSE|NVP at 30°C.

	Na	Zr	Р	
Element mass ratio (%)	13.29	37.02	5.67	

Table S1 Mass ratio of each element in sol-gel product

 Table S2
 Fitted bulk impedance of SUS|PCSE|SUS and SUS|CSE|SUS at different temperature

Fitted bulk impedance (Ω)										
Temperatur	20	25	40	15	50	55	60	65	70	75
e (°C)	30	33	40	43	30	33	60	03	/0	13
PCSE	908.8	412.6	170.8	62.2	33	15.4	11.9	9.3	6.3	4.6
CSE	31949	1101	2410	718	130.9	54.3	31.2	24.1	19.3	13.6
		3								

The thickness of PCSE and CSE membrane was 118 and 98 μ m, respectively. The contact area between the electrolyte membrane and the SUS electrode is 1.96 cm².

Table S3 Bulk and interfacial impedance of Na|PCSE|Na and Na|CSE|Na before and after 30 cycles

	$R_{\mathrm{b0}}~(\Omega)$	R_{b1} (Ω)	$R_{\rm i0}~(\Omega)$	$R_{\rm il}$ (Ω)
PCSE	10.99	10.89	52.46	128.07
CSE	16.61	15.79	124.62	188.78

 $R_{\rm b}$ represents the bulk impedance, $R_{\rm i}$ represents the interfacial impedance, $_0$ indicates initial state, $_1$ indicates after 30 charge/discharge cycles

Table S4 Bulk and interfacial impedance of Na|PCSE|NVP and Na|CSE|NVP before and after 100 cycles

	$R_{\rm b0}~(\Omega)$	R_{b1} (Ω)	$R_{\rm i0}~(\Omega)$	$R_{\rm il}$ (Ω)
PCSE	12.64	14.89	65.20	21.73
CSE	16.31	18.98	99.38	105.96

 $R_{\rm b}$ represents the bulk impedance, $R_{\rm i}$ represents the interfacial impedance, $_0$ indicates

initial state, 1 indicates after 100 charge/discharge cycles

			0 /			
Solid electrolyte	Cathode	Temperatur e (°C)	Rate (C)	Initial capacity	Cycles	Capacity retention (%)
				$(mAh g^{-1})$		
1.FMC-ASPE ¹	NVP	80	0.5	107.5	400	89
2.NZ-PEO@IL*2	NVP	60	0.5	104.5	150	90
3.PEPA@NC ³	FeHCF	60	0.2	100	350	77.2
$4.BPCE^4$	NVP	50	0.5	107	300	88.5
5.PEO-NaClO ₄ - Na ₃ Zr ₂ Si ₂ PO ₁₂ ⁵	MnHCF	60	0.5	109.3	300	83
6.CPE-IL40*6	NVP	60	0.1	98	70	86.7
7. SPE ⁷	NaNFM	60	0.1	102.4	80	90
8.PEO/NZTO ⁸	NVP	80	0.2	95	100	89.4
9.PEO- β -Al ₂ O ₃ ⁹	NVP	60	0.2	93.1	100	83.6
10.PEO-P-N ¹⁰	NVP	60	1	102	500	87.2
$11.ATFPE^{11}$	NVP	60	1	87.3	1000	78.2
12.2N8D+FEC*12	NVP	60	0.5	108	200	50.3
13.CPE ¹³	NVP	60	0.5	102	250	86
14.PE-PEO /NaTFSI ¹⁴	NVP	80	0.1	115	200	88.7
15.BSPCE ¹⁵	NVP	60	0.1	115.7	200	86.8
16.PSZ ¹⁶	NVP	80	0.5	92.3	200	95
17.M1 ¹⁷	NaFe(SO ₄) ₂	60	0.1	84	60	89.3
This work	NVP	60	1	107.9	1350	80.5

Table S5 A comparison of the conditions and cycling performance of Na|PCSE|NVP with recently published PEO-based sodium solid-state electrolytes (* denotes quasi-solid-state design)

Reference

- Y. Su, X. Rong, A. Gao, Y. Liu, J. Li, M. Mao, X. Qi, G. Chai, Q. Zhang, L. Suo, L. Gu, H. Li, X. Huang, L. Chen, B. Liu and Y.-S. Hu, *Nat. Commun.*, 2022, 13, 4181.
- 2. L. Shen, S. Deng, R. Jiang, G. Liu, J. Yang and X. Yao, Energy Storage Mater., 2022, 46, 175-181.
- T. Wang, M. Zhang, K. Zhou, H. Wang, A. Shao, L. Hou, Z. Wang, X. Tang, M. Bai, S. Li and Y. Ma, *Adv. Funct. Mater.*, 2023, 33, 2215117.
- 4. H. Wang, Y. Sun, Q. Liu, Z. Mei, L. Yang, L. Duan and H. Guo, J. Energy Chem., 2022, 74, 18-25.
- 5. X. Yu, L. Xue, J. B. Goodenough and A. Manthiram, ACS Mater. Lett., 2019, 1, 132-138.
- G. Chen, Y. Bai, Y. Gao, Z. Wang, K. Zhang, Q. Ni, F. Wu, H. Xu and C. Wu, ACS Appl. Mater. Interfaces, 2019, 11, 43252-43260.
- 7. S. Chen, F. Feng, Y. Yin, H. Che, X.-Z. Liao and Z.-F. Ma, J. Power Sources, 2018, 399, 363-371.
- 8. J.-F. Wu, Z.-Y. Yu, Q. Wang and X. Guo, *Energy Storage Mater.*, 2020, 24, 467-471.
- Y. Yao, Z. Liu, X. Wang, J. Chen, X. Wang, D. Wang and Z. Mao, J. Mater. Sci., 2021, 56, 9951-9960.
- E. Matios, H. Wang, J. Luo, Y. Zhang, C. Wang, X. Lu, X. Hu, Y. Xu and W. Li, *J. Mater. Chem. A*, 2021, 9, 18632-18643.
- J. Guo, F. Feng, S. Zhao, R. Wang, M. Yang, Z. Shi, Y. Ren, Z. Ma, S. Chen and T. Liu, *Small*, 2023, 19, 2206740.
- 12. S. Kang, C.-e. Yang, B. Jeon, B. Koo, S.-T. Hong and H. Lee, *Energy Storage Mater.*, 2021, **39**, 259-264.
- 13. S. Bag, C. Zhou, S. Reid, S. Butler and V. Thangadurai, J. Power Sources, 2020, 454, 227954.
- J. Zhang, Y. Su, Y. Qiu, X. Zhang, F. Xu and H. Wang, ACS Appl. Mater. Interfaces, 2024, 16, 30128-30136.
- 15. J. Guo, F. Feng, X. Jiang, R. Wang, D. Chu, Y. Ren, F. Chen, P. He, Z.-F. Ma, S. Chen and T. Liu, *Adv. Funct. Mater.*, 2024, **34**, 2313496.
- J. Zhang, Y. Wang, Q. Xia, X. Li, B. Liu, T. Hu, M. Tebyetekerwa, S. Hu, R. Knibbe and S. Chou, Angew. Chem. Int. Ed., 2024, 63, e202318822.
- J. Guzmán-Torres, A. G. Sánchez-Valdez, L. L. Garza-Tovar, L. C. Torres-González, E. González-Juárez, I. González-Martinez, A. Espinosa-Roa and E. M. Sánchez-Cervantes, *Polym. Bull.*, 2024, 81, 2465-2480.