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S1. AIMD Computational Details

All the AIMD calculations were performed with freely available CP2K/ Quickstep 

package.1 The DFT implemented in CP2K is based on a hybrid Gaussian plane wave 

(GPW) scheme. The orbitals were described by an atom centered Gaussian-type basis 

set, and an auxiliary plane wave basis set was used to re-expand the electron density in 

the reciprocal space. The 2s, 2p electrons of O, 2s, 2p, 3s electrons of Na, 1s electron 

of H and 2s, 2p electrons of Na were treated as valence, and the remaining core electrons 

were represented by Goedecker−Teter−Hutter (GTH) pseudopotentials.2, 3 The 

Gaussian basis sets were double-ζ with one set of polarization functions (DZVP),4 and 

the energy cutoff was set to 400 Ry. We employed the Perdew−Burke−Ernzerhof (PBE) 

functional5 to describe the exchange-correlation effects, and the dispersion correction 

was applied in all calculations with the DFT-D3 method.6

A matrix diagonalization procedure was used for the wave function optimization 

and the self-consistent field (SCF) convergence was facilitated by Fermi smearing with 

the electronic temperature of 300 K. In static calculations, the geometries were 

optimized by Broyden-Fletcher-Goldfarb-Shanno (BFGS) minimizer. For sampling the 

structures of the interface models and bulk solution, Born-Oppenheimer molecular 

dynamics (BOMD) was employed, and canonical ensemble (NVT) conditions were 
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imposed by a Nose-Hoover thermostat with a target temperature of 300 K. 7The MD 

time step is set to 0.5 fs. Note that due to the large size of the supercells, only Γ point 

was used in all calculations.



S2. MLP training

Based on AIMD, we trained a machine learning potential to describe graphene-

alkane/water interfaces. We use the Deep Potential - Smooth Edition (DeepPot-SE), 

se_e2_a descriptor model to fit the potential energy surface (PES) for graphene - 

alkane/water interface, as implemented in the freely available DeePMD-kit package.8-

10 The se_e2_a model uses two sets of deep neural networks (DNNs): the first DNN 

(the embedding net) maps the atomic configuration of atom i to a descriptor Di, which 

encodes the 2-body radial and angular information within a cutoff radius (rcut); Di are 

then mapped to "atomic energy" Ei using a second DNN (the fitting net). The system 

total energy E is assumed to be the sum of atomic energies E =∑iEi, while atomic forces 

Fi are derived from the negative gradient of the atomic energies Ei. MLMD using the 

se_e2_a model is interfaced with molecular dynamics engine LAMMPS, 11as 

implemented in DeepMD-kit. See Sec. 2.2.5. for our LAMMPS MLMD details.

We construct 3 MLP models using a concurrent learning workflow implemented 

in the DP-GEN package,12 with ab-initio trajectory as initial training set. We first 

randomly sample 1500 structures from the trajectory to train 3 initial models. Then, 

three consecutive steps, namely, exploration, labelling, and training, are repeated until 

MLP prediction reaches sufficient accuracy.

exploration: Several MLMD simulations at 300 K, 400 K, and 500 K are performed 

for configuration exploration. Here we use elevated temperature NVT simulation to 

enhance the PES sampling. Structures in these trajectories are classified as "accurate", 

"candidate" and "fail" according to model deviation, which is defined as the max force 



deviation among 3 MLP models. (see ref13 detailed descriptions for model deviation)

labelling: 50~100 "candidate" structures are selected for DFT labelling. These 

structures are added to the existing training set after DFT evaluations.

training: Use existing training set to train 3 MLP models again.

Below are the detailed DeePMD-kit and DP-GEN training parameters.

We use the se_e2_a descriptor model with local environment cutoff and smooth 

cutoff parameter set as 6.0 and 0.5 Å. The embedding net has hidden layers of size 

(20,40,80), and fitting net has hidden layers of size (100,100,100). The axis_neuron 

parameter for the descriptor is set to 16, which controls the embedding matrix size. (see 

ref10)

In each DP-GEN iteration, 3 MLPs are trained with 30000 steps, where the learning 

rate starts form 1×10-3 and finally decays to 3.5×10-8. 300 K, 400 K and 500 K NVT 

ensemble sampling, are used for configuration exploration, where exploration time 

gradually increases from 2 ps to 10 ps. The upper and lower trust bounds for model 

deviation are set as 0.60 and 0.40 eV/Å, respectively. 

For final production, 3 MLPs are trained with 120000 steps, where the learning rate 

starts form 1×10-3 and finally decayed to 3.5×10-8.



S3. Molecular Dynamics Setting

All MLMD simulations in this work are performed in the NVT ensemble with a 

time step of 0.5 fs using the LAMMPS package. We use the Nose-Hoover style 

thermostatting with temperature damping parameter of 100 fs. The initial 

configurations for MLMD are shown in Figure S4.



Figure. S1. Schematic diagram of electrochemical test device.



Figure. S2. Initial and final state of competitive adsorption models.



Figure. S3. Initial and final state of EDL models for AIMD.



Figure. S4. Initial state of EDL models for MLMD.



Figure. S5. Charge differential density profiles.



Figure. S6. The stabilized interface models



Figure. S7. The relationship between the amount of charge transfer and the length of 
the carbon chain.
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