Supplementary Information

Highly salt concentrated ethylene carbonate-based selfstanding copolymer electrolyte for solid-state lithium metal battery

Nantapat Soontornnon^a, Kento Kimura^b, and Yoichi Tominaga^{a*}

^a Graduate School of Bio-Applications and Systems Engineering (BASE), Tokyo University of Agriculture and Technology, 2-21-16 Nakacho, Koganei, Tokyo 184-8588, Japan

^b Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of

Agriculture and Technology, 2-21-16 Nakacho, Koganei, Tokyo 184-8588, Japan

* Corresponding author: ytominag@cc.tuat.ac.jp

Scheme S1 Synthesis of random copolymer P(EC/EO/AGE) (Neat_x) and crosslinked copolymer (CP_x) (where x represents the AGE ratio).

Figure S1 ¹H NMR spectrum of poly(ethylene carbonate) (PEC).

Figure S2 ¹H NMR spectrum of poly(ethylene carbonate-*co*-ethylene oxide) (P(EC/EO)).

Figure S3 ¹H NMR spectrum of P(EC/EO/AGE) (Neat_x), which include the integral peak area of the EC/EO/AGE units. (a) Peak assignment (b) Neat₈, (c) Neat₁₄, (d) Neat₂₃, and (e) Neat₂₉.

Figure S4 FT-IR spectra of 1900–1600 cm⁻¹ for the uncrosslinked (Neat_x) and crosslinked copolymers (CP_x) with (a) 8 mol%, (b) 14 mol%, (c) 23 mol%, and (d) 29 mol% of AGE unit.

Crosslinked copolymer	Monomer unit Crosslinked (%) copolymer		EC/EO	Young's modulus	Elongation at break	T _g	T _{d5}	
	EC	EO	AGE	-	(MPa)	(70)	()	(
CP ₈	60	32	8	1.9	2.5	23	-22	222
CP	58	28	14	2.1	6.6	17	-24	234
CP ₂₃	54	23	23	2.3	16.8	16	-29	242
CP ₂₉	52	19	29	2.7	23.5	15	-31	260

 Table S1 Mechanical and thermal properties of CPs.

Figure S5 Photographs of CP_{29} . (a) CP_{29} (\emptyset = 35 mm). (b) CP_{29} in a bending state.

Figure S6 Temperature dependence of the ionic conductivity for PEO-5 mol% LiFSI and CP₂₉-SPEs

at various salt concentration.

Figure S7 DSC curves of (a) PEC, (b) P(EC/EO), and (c) CP_{29} .

Figure S8 TGA thermograms of PEC, P(EC/EO), and CP₂₉.

Figure S9 FT-IR spectra of (a) 1900–1600 cm⁻¹ of the Neat₂₉ and CP₂₉ and their electrolytes with LiFSI at various concentrations.

Figure S10 ¹H NMR spectrum of residual solvent (acetonitrile, AN) extracted from CP-SPEs and acetone (AC) of (a) CP_{29} -120 mol% LiFSI, (b) CP_{29} -160 mol% LiFSI, and (c) CP_{29} -180 mol% LiFSI. (d) Chemical structure for peak assignments. (e) An equation for the AC:AN (mol:mol) ratio calculation, where *I* and H are the integral area of each peak and the number of protons for each unit, respectively (H_a=6, H_b=3). The number of molecules of the residual AN was calculated combining the AC:AN ratio and the weight of added AC (0.1 g). Afterwards, the weight of the residual AN (wt%), which was present in the 0.01 g of CP-SPE was calculated. To better understand, we give an example calculation of CP₂₉-120mol% LiFSI as follows;

$$=\frac{1.00}{6} \cdot \frac{1.17 \times 10^{-3}}{3}$$

Mass of AN (g) = $1.17 \times 10^{-3} \times 6 \times 0.1 \ g \times 41.05 \ g/mol$

Mass of AN (g) = 0.000165 g

$M_{\rm Mass of ANI}(u,to()) = \frac{0.000165 \ g \ \times 100}{0.0159 \ a}$

Mass of AN (wt%) = 1.04 wt%

where 58.08 g/mol is molecular weight of acetone, 41.05 g/mol is molecular weight of acetonitrile, and 0.0159 g is a recorded mass of CP_{29} -120 mol% LiFSI.

Figure S11 (a) DSC curves and (b) TGA thermograms of CP₂₉-based SPEs at various LiFSI concentrations.

Sample	Т _g (°С)	τ _{d5} (°C)	Young's modulus (MPa)	Elongation at break (%)
Original CP ₂₉	-31	260	23.5	15
+ 120 mol% LiFSI	-36	160	0.80	163
+ 160 mol% LiFSI	-52	151	0.10	209
+ 180 mol% LiFSI	-55	149	0.09	190

Table S2 Thermal and mechanical properties of CP₂₉ electrolytes at different salt concentrations.

Figure S12 (a) Voltage profiles of charge/discharge at C/10 rate (1C =160 mA g⁻¹) and (b) cycling performance of Li//LFP cell (cathode mass loading: 2.3 mg cm⁻² of active materials) using CP_{29} -180 mol% LiFSI as an electrolyte.

Table S3 Resistance values from fitting EIS curves of Li//LFP cell with CP_{29} -160 mol% LiFSI electrolyte at 40 °C using the equivalent circuit.

Cycle number	R ₁ (kΩ)	<i>R</i> ₂ (kΩ)	<i>R</i> ₃ (kΩ)
Fresh	1.95	1.23	7.52
at 100th	2.62	0.64	12.54
at 200th	3.58	0.85	15.30
at 300th	4.13	1.36	23.04
at 400th	5.54	2.42	36.58