Supporting Information

Improved energy storage properties achieved in NaNbO₃-based relaxor antiferroelectric ceramics via anti-parallel polar nanoregions design

Zhentao Wang ^a, Da Li ^a, Wenyuan Liu ^b, Xu Liang ^b, Weichen Zhao ^a, Jinnan Liu ^a, Jiajia Ren ^a, Tao Zhou ^d, Diming Xu ^a, Wenfeng Liu ^c, and Di Zhou ^{a*}

^a Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China

^b State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China

^c State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China

^d School of Electronic and Information Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

^{*} Corresponding author: Di Zhou; E-mail address: zhoudi1220@xjtu.edu.cn;

Fig. S1 SEM micrographs of NN-BZH ceramics. a) x = 0.05, b) x = 0.10, c) x = 0.15, d) x = 0.20, e) x = 0.15 (RRP).

Fig. S2 The distribution of grain size of NN-BZH ceramics. a) x = 0.05, b) x = 0.10, c) x = 0.15, d) x = 0.20, e) x = 0.15 (RRP).

Fig. S3 The Rietveld refinement of XRD data for the a) x = 0.10, b) x = 0.20 ceramics.

Fig. S4 Permittivity and dielectric loss as a function of temperature at various frequencies for a) x = 0.10, b) x = 0.20 ceramics.

Fig. S5 ln ($1/\epsilon$ '- $1/\epsilon_m$ ') versus ln ($T-T_m$) for (1-x)NN-*x*BZH ceramics.

Fig. S6 Out-of-plane PFM phase and topography images of a) and d) NN, b) and e) x = 0.05, c) and f) x = 0.15.

Fig. S7 a) Frequency-dependence (1-200 Hz), b) cycle-dependence (1-10⁶) and (c) temperature-dependence (20–100 °C) *P-E* hysteresis loop for x = 0.15 (RRP) ceramics

Fig. S8 Over-damped discharging waveforms of discharge energy density at various

electric field for x = 0.15 (RRP).