Supporting Information

Substrate-Free Growth of N-Doped Bamboo Tube Morphology on CoNi Alloy Nanoparticles as an Electrocatalyst for Anion Exchange Membrane Fuel Cells

Anil Kumar U.,^[a,b] and Vishal M. Dhavale* ^[a,b]

^a CSIR-Central Electrochemical Research Institute-Madras Unit, CSIR Madras Complex, Taramani, Chennai 600113, India.

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201 002, India.

Fig. No.	Content	Page No.
	Structural Characterization	03
Fig. S1	Fe-SEM micrographs of Co-MOF and HR-TEM micrograph of Co@NC	04
Fig. S2	Fe-SEM micrograph of CoNi-MOF	04
Fig. S3	HAADF-STEM and Elemental mapping of CoNi@NC-T	05
Fig. S4	Fe-SEM micrograph of Ni@NC-T	05
Fig. S5	Fe-SEM micrograph of CoNi@NC-31 and CoNi@NC-13 and elemental mapping	06
Fig. S6	Fe-SEM micrograph of CoNi@NC-550 and CoNi@NC-750	06
Fig. S7	Comparative TG-DSC profiles	07
Fig. S8	HAADF-STEM and EDAX mapping	07
Table S1	ICP-OES sample analysis of prepared catalysts	08
Fig. S9	Comparative Raman analysis, BET and pore size distribution	08
Table S2	Comparative I _d /I _g ratios, BET surface area and Pore size distribution of CoNi@NC-T, Co@NC and Ni@NC-T	09
Fig. S10	XPS analysis of CoNi@NC-T	09
Fig. S11	Calibration of reference electrode	10
Fig. S12	Comparative cyclic voltammogram and linear sweep voltammetry of CoNi@NC-T	11
Fig. S13	Capacitive current cyclic voltammogram and corresponding anodic and cathodic slopes	12
Fig. S14	ORR curves recorded at different rotation speed of working electrode	12
Fig. S15	Koutecky-Levich (K-L) plots	13
Fig. S16	Calculation of number of electrons	13
Fig. S17	Rotating ring disk electrode study	14
Fig. S18	Stability test of Co@NC	14

Table of contents:

Fig. S19	The comparative bar graph of electrochemical properties of the prepared catalysts	15
Fig. S20	Fe-SEM micrograph, Elemental mapping and p-XRD patterns after the stability test	16
Fig. S21	Schematic procedure of electrode fabrication and membrane electrode assembly (MEA)	16
Table S3	Electrochemical properties compared with literature reports	17-18
Table S4	AEMFC performance comparison with literature reports of various types of membranes	18-19
Table S5	AEMFC performance with Fumion based membranes	19-20

Structural characterization:

A well-dispersed sample for the high-resolution transmission electron microscope (HR-TEM) analysis was prepared by sonicating the prepared catalyst (1 mg) in 5 ml isopropanol solvent. The homogenously dispersed sample was drop-coated on a lacey carbon-coated copper grid and was dried under a vacuum. In FEI, Talos F200s instrument operated at an accelerated voltage of 200 kV transmission electron microscopy. Surface area analysis of the prepared catalysts was characterized using N₂ adsorption-desorption isotherms, measured at 77 K using Quantachrome Autosorb iQ-MP/iQ-XR. Surface area and pore sizes were determined using the Brunauer-Emmett-Teller (BET) equation, and pore size distribution (PSD) curves were obtained by the NLDFT method. Field emission scanning electron microscopic (Fe-SEM) images were recorded using a TESCAN MIRA3 LM instrument, and Gemini ZESIS SUPRATM 55VP were used to micrograph the morphology of the prepared catalysts and SEM-EDAX analysis by 20 mm² X-Max from Oxford instruments. Cobalt and Nickel ratios was determined by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) with Agilent technologies, 7700 series system. For ICP-MS analysis, the samples for are prepared by dissolving the catalyst in of aqua regia and kept for sample digestion. An transparent solution indicates the digestion of the sample, and later, it was carefully filtered using vacuum filtration and diluted by adding deionized water in standard volumetric flask. Powder X-ray diffraction (p-XRD) patterns were recorded on Bruker, D8 Advance model, having X-ray source CuK α with λ =1.5406 Å and Lynx Eye & Scintillation Counter as a detector in the 20 range of 10–80° in 20 minutes. The induced defects, like graphitic and defective nature of the carbon surface of the surface, were understood by measuring the Raman spectrum in the range of 400 to 4000 cm⁻¹ using laser raman spectroscopy technique with 532 Oxxius laser in the Horiba Jobin made LabRAM HR evolution model. X-ray photoelectron spectroscopy (XPS) measurements were carried out on a Thermo-scientific made ESCALAB 250xi BASE SYSTEM with UPS and XPS IMAGE mapping model. The thermal stability of the samples was measured and analysed using NETZSCH, STA 449 F3 model and its proteus software in both N₂ and air atmosphere with 5 °C/min.

Fig. S1: (a) Fe-SEM micrograph of Co-MOF with a long hexagonal rod-like shape, (b) HR-TEM micrograph of Co@NC (Co-MOF annealed at 900 °C) showing predominant core-shell morphology with cobalt core wrapped with a N-doped carbon shell structure.

Fig. S2: (a, b) Fe-SEM micrographs of CoNi-MOF with irregular hexagon shape particles at different magnifications.

Fig. S3: (a) High angle annular dark-field (HAADF) and scanning transmission electron microscopy (STEM) images of the knotted bamboo tube-like morphology, (b) HAADF with the distribution of Co, Ni atoms along the tube and on the N-doped carbon support (c-g) Co, Ni, N, C, and O elemental mapping, respectively, and (h) combined elemental mapping of CoNi@NC-T.

Fig. S4: Fe-SEM micrographs of Ni@NC-T (i.e., Ni-MOF annealed at 900 °C) with CNT-Necklace like structure.

Fig. S5: Fe-SEM micrographs of (a, c) CoNi@NC-31 and CoNi@NC-13, respectively and Elemental distribution of (b, d) CoNi@NC-31 and CoNi@NC-13, respectively.

Fig. S6: (a-b) Fe-SEM micrographs of CoNi@NC-550 and CoNi@NC-750 (white circle shows sheet-like structures and yellow circles shows the formation of tubes), respectively.

Fig. S7: (a, b) Comparative TG-DSC profiles of Dicyandiamide (DCDA), CoNi-MOF, and CoNi-MOF with DCDA samples. Data recorded in a nitrogen atmosphere.

Fig. S8: High-angle annular dark-field (HAADF), EDAX spectrum, and at. % of elements, (a) on the tube, and (b) CoNi-alloy particles. [the scanned area is highlighted with a yellow-coloured square mark]

	Prepared	Sample code	ICP-MS Analysis
S.No.	samples		(Co:Ni)
1	Co ₁ Ni ₁	CoNi@NC-T	0.9:1.1
2	Co ₁ Ni ₃	CoNi@NC-13	1:2.9
3	Co ₃ Ni ₁	CoNi@NC-31	2.86:0.97

Table S1: Cobalt and Nickel ratios of the prepared catalyst measured using ICP-MS analysis.

Fig. S9: (a) Comparative Raman spectra, and (b-c) Comparative BET-isotherm and Pore-size distribution of CoNi@NC-T, Co@NC, and Ni@NC-T.

Table S2: Comparative Raman and BET results for CoNi@NC-T, Ni@NC-T and Co@NC, respectively.

		Raman Analysis	BET AI	nalysis
S.No.	Name of Catalyst	I _d /I _g ratio	BET Surface Area (m²/g)	Pore Volume (cc/g)
1	CoNi@NC-T	1.02	294	2.402
2	Ni@NC-T	0.97	238	0.941
3	Co@NC	0.95	193	0.745

Fig. S10: XPS analysis of CoNi@NC-T, (a) survey scan, (b) C 1s spectra, and (c) O 1s spectra.

Calibration of the Hg/HgO reference electrode:

In order to convert the obtained potentials from Hg/HgO to a reversible hydrogen electrode (RHE), a LSV at a scan rate of 5 mV/s was carried out in a hydrogen-saturated 0.1 M KOH solution.

<u>Conditions</u>: Platinum and graphite rod were used as a working and counter electrode. The correction factor was chosen as the point at which the current crosses the zero line.

Fig. S11: Calibration LSV curve for the Hg/HgO reference electrode. (Screenshot from Aftermath software, an original data)

Fig. S12: (a) Cyclic voltammogram, (b) hydrodynamic LSV, and (c) change in $E_{1/2}$ (V vs RHE) and limiting current density (j_1 , mA/cm²) for various mass loading of CoNi@NC-T. <u>Conditions:</u> 1600 RPM, 5 mV/s scan rate, Electrolyte: oxygen saturated 0.1 M KOH solution.

Fig. S13: (a-c) Capacitive current recorded in a nitrogen-saturated 0.1 M KOH solution with different scan rates in a potential window of 0.32 to 0.52 V, and (d-f) current vs scan rate plot at 0.42 V.

Fig. S14: (a-d) Hydrodynamic ORR curves recorded at different rotation speed of working electrode in an oxygen-saturated 0.1 M KOH solution with scan rate of 5 mV/s for Pt/C, CoNi@NC-T, Co@NC and Ni@NC-T, respectively.

Fig. S15: (a-d) The Koutecky-Levich (K-L) plots derived from Fig. S14 at different potentials of 0.40 to 0.60 V for Pt/C, CoNi@NC-T, Co@NC and Ni@NC-T, respectively.

Fig. S16: Number of electrons derived from the Koutecky-Levich (K-L) equation derived from Fig. S15 at different potentials of 0.40 to 0.60 V for Pt/C, CoNi@NC-T, Co@NC and Ni@NC-T, respectively.

Fig. S17: RRDE study for Pt/C, CoNi@NC-T, Co@NC and Ni@NC-T. (a) RRDE curves recorded for ORR and (b) change in number of electrons (n), and % of H_2O_2 with respect to the disk potential. <u>Conditions:</u> 1600 RPM, 5 mV/s scan rate, Electrolyte: oxygen saturated 0.1 M KOH solution.

Fig. S18: ORR Stability LSV curves for Co@NC at before and after 5K potential cycles in O₂-saturated 0.1 M KOH. <u>Conditions:</u> 1600 RPM, 5 mV/s scan rate, Electrolyte: oxygen saturated 0.1 M KOH solution.

Fig. S19: Comparative bar graph indicates the change in $E_{1/2}$, j_k and j_l before and after cycling stability test for Pt/C, CoNi@NC-T and Co@NC.

Fig. S20: Post 30000 cycles stability of CoNi@NC-T (a-b) Fe-SEM micrograph confirms the retention of tubular morphology and EDAX spectrum. In EDAX mapping a trace amounts of potassium concentration were observed on the tube's surface and are attributed to cation species adsorption from 0.1M KOH electrolyte. (c) Comparison of p-XRD patterns before and after the stability test.

Fig. S21: Schematic procedure of electrode fabrication and membrane electrode assembly (MEA) for Anion Exchange Membrane Fuel Cell (AEMFC) application.

Table S3: Literature reports on Half-cell Stability and ORR LSV performance of non-preciouselectrocatalysts in 0.1 M KOH electrolyte.

S.No.	Catalyst name	catalyst	Eonset	E _{1/2}	No of	$\Delta E_{1/2}$	Reference No
		loading (mg/cm ²)	(V VS RHE)	(V vs RHE)	cycles	(mV vs RHE)	
1.	CoNi@NC-T	0.22	0.94	0.83	30000	18	This work
2.	Co@NC	0.22	0.93	0.82	5000	50	This work
3.	HiSPEC TM 4000 Pt/C	0.22	1.03	0.89	15000	33.3	This work
4.	Ni@NC-T	0.22	0.90	0.75			This work
5.	Co/S/N-800		0.912	0.831	5000	5	<i>ChemSusChem</i> 2019, 12 ,3390 – 3400.
6.	Co/NGC-3	0.20	0.94	0.85	8000	12	ACS Appl. Mater. Interfaces, 2020, 12(5) , 5717– 5729.
7.	NFC@Fe/Fe ₃ C-9	0.6	0.991	0.87	50000	26	Nanoscale, 2020, 12 , 2542- 2554.
8.	CNF@Zn/CoNC	0.25	0.91	0.82	1000	No change	<i>Small</i> , 2018, 14 , 1704207.
9.	NiCoOS		0.88	0.79	800	Negligible loss	Nano energy, 2019, 58 , 680- 686.
10.	NiCo ₂ S ₄ @g-C ₃ N ₄ - CNT	0.12	0.87	0.76	6000	Negligible loss	<i>Adv.Mater.</i> , 2019, 31 , 1808281.
11.	FeCo-NCNFs-800	0.255	0.907	0.817			ACS Sustainable Chem. Eng., 2019, 7(5) , 5462–5475.
12.	FeCo- NSCNF@NCNT	0.3	0.85	0.792			<i>J. Power Sources</i> , 2019, 421 , 68-75.
13.	FCx-NC/CNTs-10	0.256	0.90	0.76			<i>J. Power Sources</i> , 2019, 438 , 227019.
14.	Co ₃ O ₄ /NPGC	0.2	0.97	0.85			Angew. Chem. Int. Ed., 2016, 55 , 4977 – 4982.
15.	Co ₃ S ₄ @N, S-rGO	0.28	0.91	0.76			ACS Appl. Mater. Interfaces., 2013, 5, 5002.
16.	Co/N-BCNTs	0.20		0.83			J. Mater. Chem. A, 2018, 6 , 5752- 5761.
17.	Co@Co ₃ O ₄ /NC-1	0.21	0.93	0.74			Angew.Chem.Int. Ed., 2016, 55 , 4087–4091.
18.	Co-Fe/NC-700	0.25		0.85			Small, 2019, 15 , 1805324.
19.	Co ₃ O ₄ @Co/NCNT		0.9				<i>Inorg. Chem.</i> , 2020, 59(5) , 3160–3170.
20.	Co _{0.5} Fe _{0.5} S@N-MC	0.8	0.91	0.82			ACS Appl. Mater. Interfaces, 2015, 7(2) , 1207–1218.

21.	S-600	0.3	0.95	0.84	2000	No change	Nanoscale, 2018,
							10 , 21076-21086.
22.	CoZn/NC	0.4	0.919	0.852	5000	15	J. Alloys Compd.,
							2024, 983 ,
							173878.
23	Fe-Sn-N/C		1.1	0.92	10000	37	Small Methods,
							2024, 2301674
							(Early View)
24.	Fe-N/P-C-700	0.6	0.94	0.86			J. Am. Chem.
							Soc., 2020, 142,
							2404-2412.
24							Int. J. Hydrogen
	CoNi/N-C-800		0.91	0.81	1000	Negligible	Energy, 2023,
						loss	48(69) , 26979-
							26989.
							ACS Sustainable
25.	CoNi@N-GCNT-FD		0.90	0.84	10000	Negligible	Chem.
						loss	Eng., 2021,
							9(24) , 8207–
							8213.

Table S4: Reported anion exchange membrane fuel cell (AEMFC) performance of various type of membrane.

S.No.	Membrane- type and	Anode loading	Cathode loading	Temp. (°C)	Peak power density	Reference
	(microns)	(mg/cm²)	(mg/cm²)		(mw/cm²)	
1.	GT82- 15/PTFE	PtRu_0.7	Pt/C_0.6	85	3370	Journal of The Electrochemical Society, 2019, 166 , F637-F644.
2.	PFTP-13 (20 μ)	PtRu_0.42	Pt/C_0.33	80	2050 to 2340 (with BP)	Nat Commun, 2021, 12 , 2367.
3.	TPN (30 μ)	PtRu_0.5	Pt/C_0.6	85	1450 (with BP)	<i>Energy Environ.</i> <i>Sci.</i> , 2018, 11 , 3283-3291.
4.	BTMA-HDPE	PtRu_0.4	Pt/C_0.4	80	2550	Energy Environ.
5.	BTMA-LDPE	PtRu_0.4	Pt/C_0.4	80	2010	1575-1579.
6.	F20C9N	PtRu_0.7	Pt/C_0.5	60	1010	<i>Adv. Funct.</i> <i>Mater.</i> , 2019, 29(26) , 1902059.
7.	Recast-FAA3	Pt/C_0.3	Pt/C_0.3	60	90.6	ACS Appl. Energy Mater., 2023, 6(24) 12549– 12559.
8.	FAA-3-50 (50 μ)	BASF	Pt/C_0.8	60	223	<i>J. Power Sources</i> , 2013, 230 , 169-175.
9.	A201 Tokuyama®	Tanaka Pt/C 0 4	Tanaka Pt/C_0.6	45	120	Int. J. Hydrogen Energy 2012 37
10.	Membrane (28 μ)	E-TEK_0.4	E-TEK_0.6	45	~100	4406-4412.
11.	FAA-3-50 (50 μ)	Pt/O	C_0.5	RT	68	<i>J. Power Sources</i> , 2017, 353 , 104-
12.	FAA-3-50	Pt/C_0.5	MoS ₂ /G-500	RT	29	114.

	(50 µ)					
13.	T20NC6NC5 N	Pt/0	C_0.5	60	105 (with BP)	<i>Macromolecules</i> , 2016, 49(3) , 815–
14.	D30NC6NC6				260 (with BP)	824.
15.	S60NC6				364 (with BP)	
16.	TPQPOH15	Pt/0	C_0.2	70	258 (with BP)	<i>ChemSusChem</i> , 2010, 3(5) , 555-558.
17.	A201	Pt_0.4	CoFe/NC_4	50	177	J. Power Sources,
18.	Membrane (28 μ)	Pt_0.4	Pt/C_0.4	50	196	1722.
19.	HMT-PMBI	TKK PtRu/C_0.8	Pt/C_0.4	60	350 (with BP)	<i>Electrochim.</i> <i>Acta</i> , 2020, 334 ,
20.		TKK PtRu/C_0.8	Pyr.KB/FePc_2	60	186 (with BP)	135575.
21.	aQAPS-S8 (40 μ)	PtRu/C_0.4	MCS(Mn-Co) _ 0.58	60	1100 (with BP)	<i>Nat</i> <i>Commun</i> , 2019, 10 , 1506.
22.	A201	TKK Pt/C_0.4	TKK PT/C_0.4	60	479	Energy Environ.
23.	membrane (Tokuyama) (28 μ)	TKK Pt/C_0.4	40 wt% Co@G/C_600_ 0.4	60	412	<i>Sci.</i> , 2019, 12 , 2200-2211.

Table S5: Reported anion exchange membrane fuel cell (AEMFC) performance with fumion based membrane with different thickness FAA-3-x, x=20-, 30-, 50- and 130-micron thickness.

S.No.	Membrane thickness	Anode loading (mg/cm ²)	Cathode loading (mg/cm²)	Temp. (°C)	Peak power density (mW/cm ²)	Reference
1.	30	HiSPEC TM 4000 Pt/C 0.7	CoNi@NC-T_1.5	30	170	This work
2.	30	HiSPEC TM 4000 Pt/C_ 0.7	CoNi@NC-T_1.0	30	157	This work
3.	30	HiSPEC TM 4000 Pt/C 0.7	CoNi@NC-T_0.7	30	128	This work
4.	30	HiSPEC TM 4000 Pt/C_ 0.7	HiSPEC TM 4000 Pt/C_0.7	30	153	This work
5.	50	Pt/C_0.8	Pt/C_0.8	60	175	J. Power Sources,
6.	50	Pt/C_0.8	$Co-Fe_3O_4/C_0.8$	60	114	2015, 277 , 147-154.
7.	20	TKK Pt/C_0.33	TKK Pt/C_0.33	65	300 to 500 (with BP)	Nat Commun, 2021,
8.	50	TKK Pt/C_0.33	TKK Pt/C_0.33	65	300 to 400 (with BP)	12 , 2367.
9.	130	E-TEK Pt/C_0.5	E-TEK_0.5	50	62	J. Phys. Chem.
10.	130	E-TEK Pt/C_0.5	N-CNT_5	50	38	<i>C</i> , 2012, 116(6) , 4340–4346.
11.	Unknown	Pt/C_0.4	Co/NC_4	60	271	<i>Appl. Catal. B</i> , 2020, 260 ,118192.
12.	50	Pt/C_0.8	Co-NC-900_2	50	60	<i>ChemElectroChem</i> , 2017, 4(11) , 2928-2933.
13.	50	E-TEK Pt/C_0.8	NpGr-72_2.5	50	27	<i>Energy Environ.</i> <i>Sci.</i> , 2014, 7 , 1059- 1067.
14.	50	Pt/C_0.5	Fe/N-F/CC-C_0.5	45	38	<i>Energy Fuels</i> , 2022, 36(4) , 2108–2122.

15.	50	Pt/C_0.5	Ni ₂₀ Co ₂₀ @B/GNF-	45	70	ACS Appl. Energy
			H_0.5			Mater., 2022, 5(8),
16.	50	Pt/C_0.5	Pt/C_0.5	45	85	10240–10253.
17.	50	Pt/C 0.12	NiCo/NCNT (1:1)	50	65	Renew. Energy,
		—	_4			2020, 154 , 508-516.
18.	50	Pt/C 0.5	N-F/PGPC 2	35	22	Sustainable Energy
		_	_			Fuels, 2021, 5, 886-
						899.
19.	50	Pt/C 0.5	N-GLC 1.5	25	6	Bull Mater
		_	_			Sci, 2021, 44, 135.
20.	50	Pt/C 0.5	Pt/C 0.5	60	140	ChemElectroChem,
		—	_			2022, 10(3) ,
						e202201052.
21.	Unknown	Pt/C_0.2	Pt/C_0.2	60	74	Int. J. Hydrogen
						Energy, 2024, 52 ©,
						139-153.
22.	50	Pt/C_0.2	Pt/C_0.2	60	91.6	ACS Appl. Energy
						Mater., 2023, 6(14),
						7702–7713.
23.	50	Pt/C_0.5	Fe-N-C-1000_4.5	60	149	Chem. Eng. J.,
		_				2023, 465 , 142987.
24.	Unknown	Pt/C_0.35	Fe-Fe ₂ O ₃ /NGr_3.0	60	54	Nanoscale, 2015, 7,
		—				20117–20125.
25.	50	Pt/C_0.5	1.3 Fe	60	87	ChemElectroChem,
		_				2023, 10,
						e202201115.