Simple preparation of 1D hierarchical magnetic CNTs/hollow porous macroscopic carbon fiber composites for efficient microwave absorption

Minghang Yang a,b,c, Yu Deng a,b,c, Mingguang Zhang a,b,c, Shuaining Zhou a,b,c,

Cheng Liu^{a,b,c*}, Xigao Jian^{a,b,c}, Yousi Chen^{a,b,c*}

^a State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart

Materials, Department of Polymer Science & Materials, School of Chemical

Engineering, Dalian University of Technology, Dalian, 116024, China.

b Technology Innovation Center of High Performance Resin Materials, Liaoning

Province.

^c Dalian Basalt Fiber Resin Matrix Composite Engineering Research Center, Dalian.

Corresponding author. *E-mail address: liuch1115@dlut.edu.cn (L. Cheng),*

Corresponding author. *E-mail address: chenyousi@dlut.edu.cn (Y. S. Chen).*

Fig S1.EDS images of Fe@SFs-1

Fig S2. High magnification SEM images of (a) the porous layer in the cross section of HPCFs-1 and (b) the cross-section of HPCFs-3

Fig S3. N_2 adsorption-desorption isotherms and pore size curves of HPCFs-1

Fig S4. SEM images of surface of (a) CNTs@HPCFs-1, (b) CNTs@HPCFs-2, and (c)

CNTs@HPCFs-3

Fig S5. TEM images of surface of CNTs@HPCFs-1

Fig S6.TGA-MS spectra of Fe@SFs-3

Sample	C (Atomic	O (Atomic		Fe (Atomic
	$\%$)	$\%$)	S (Atomic $\%$)	$\%$)
$HPCFs-1$	95.88	3.87	0.26	۰
CNTs@HPCFs-1	78.44	17.88	3.15	0.44

Table S1. Surface elemental content of fibers measured by XPS

Fig S7. Calculated 3D/2D RL and contour maps of the RL of HPCFs-1 (a, b, c),

HPCFs-2 (d, e, f), and HPCFs-3 (g, h, i)

Fig S8. (a) Real permittivity (ε') , (b) imaginary permittivity (ε'') , (c) dielectric loss tangent (tan_{δε}), (d) Real permeability (μ '), (e) imaginary permeability (μ ''), and (f) magnetic loss tangent ($tan_{\delta u}$) of HPCFs

Fig S9. Cole-Cole curves of (a) CNTs@HPCFs-2, (b) CNTs@HPCFs-3, (c)

HPCFs-1, (d) HPCFs-2, and (e) HPCFs-3

Fig S10. 3D and 2D contour maps of |Zin/Z0| for (a, d) CNTs@HPCFs-1, (b, e) CNTs@HPCFs-2, (c, f) CNTs@HPCFs-3, (g, j) HPCFs-1, (h, k) HPCFs-2, and (i, l)

Microwave	Thickness	Effective		
absorber	(mm)	$RL_{min}(dB)$	bandwidth	Reference
			(GHz)	
Carbon	2.06	-30.75	6.78	
microtubes				$[1]$
PAN-based	2.5		1.30	
carbon fiber		-39.90		$[2]$
CNTs/CF	1.18	-56.11	3.6	$[3]$
GO/CF	4.65	-57.3	4.88	$[4]$
Porous carbon	2.2	-30.46	5.44	$[5]$
Porous carbon	1.70	-29.50	7.2	
nanosheets				[6]
Porous carbon	1.75	-40.4	3.48	
frameworks				$[7]$
CNTs@HPCF	1.90	-54.03	4.08	This work
${\bf S}$				

Table S2. Comparison with reported microwave properties of carbon materials

Reference

[1] T. Ning, Q. Li, Q. Ren, J. Wang, Y. Sun and P. Zhang, Kapok fibers-derived carbon microtubes as efficient electromagnetic wave absorption materials, Ceramics International, 2023, 49, 29339-29347.

[2] S. Liu, J. Wang, B. Zhang, X. Su, X. Chen, Y. Chen, H. Yang, Q. Wu and S. Yang, Transformation of traditional carbon fibers from microwaves reflection to efficient

absorption via carbon fiber microstructure modulation, CARBON, 2024, 219,

[3] C. Wang, Y. Wang, H. Jiang, H. Tan and D. Liu, Continuous in-situ growth of carbon nanotubes on carbon fibers at various temperatures for efficient electromagnetic wave absorption, CARBON, 2022, 200, 94-107.

[4] Y. Cao, Z. Cheng, R. Wang, X. Liu, T. Zhang, F. Fan and Y. Huang, Multifunctional graphene/carbon fiber aerogels toward compatible electromagnetic wave absorption and shielding in gigahertz and terahertz bands with optimized radar cross section, CARBON, 2022, 199, 333-346.

[5] S. Wei, Z. Shi, W. Wei, H. Wang, D. Dastan, M. Huang, J. Shi and S. Chen, Facile preparation of ultralight porous carbon hollow nanoboxes for electromagnetic wave absorption, Ceramics International, 2021, 47, 28014-28020.

[6] C. Gao, H. Zhang, D. Zhang, F. Gao, Y. Liu, X. Chen, D. Wu, M. Terrones and Y. Wang, Sustainable synthesis of tunable 2d porous carbon nanosheets toward remarkable electromagnetic wave absorption performance, Chemical Engineering Journal, 2023, 476,

[7] Y. Mao, K. Liu, Y. Sheng, J. Liu, S. Fu and C. Tang, Hierarchical porous carbon frameworks derived from juncus effusus biomass with robust electromagnetic wave absorption properties, Journal of Materials Chemistry C, 2024, 12, 4442-4452.