Black phosphorus hybrid film enabled by covalently chemical and spatial hierarchicallocking effect for flexible supercapacitors with 100% cycling stability

Xipeng Xin,^a Yifeng Xu,^a Min Zhou, ^a Qingdong Liu, ^a Jingyu Fan, ^a Wei Chen, ^b Jijin Xu, ^a

Jing Liu, ^a Lian Gao, ^a Kunpeng Zhao, ^a Xuefeng Song.*, ^a

^a School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai,

200240, China.

^b Baosteel Roll Science & Technology Co., Ltd, Changzhou 213023, China.

E-mail address: songxfeng@sjtu.edu.cn (X.F. Song); Tel: +86-21-34203744

† Electronic supplementary information (ESI) available.

Experimental section

Synthesis of BP

Bulk BP is synthesized through a facile high-energy ball milling method. Red phosphorus (RP) powder (Alfa Aesar, 99.99%, 800 mg) and stainless steel balls (11, 10 mm in diameter; 10, 6 mm in diameter; 20, 2 mm in diameter) were put into a stainless steel vessel (50 mL) and sealed in an argon-filled glove box. The milling process was carried out with a rotation rate of 1200 rpm for 2 h using the high-energy ball milling Instrument (MSK-SFM-LN-192, Hefei Kejing Co. Ltd). This procedure is applied to transform RP into BP.

Synthesis of c-CN

Conductive c-CN material is synthesized by a "molten salt reduction denitriding" route from pristine g-C₃N₄. The pristine g-C₃N₄ is first prepared by a simple calcination method according to our previous work.¹ Then, the obtained g-C₃N₄, Mg powder, and AlCl₃ were homogeneously mixed and loaded in a stainless-steel autoclave and heated at 200 °C for 10h. After cooling to room temperature naturally, the collected precipitate was put in 0.1 M hydrochloric acid and stirred for several hours. Afterward, the product was washed with distilled water and ethanol until the solution was neutral. Finally, the product was dried in a vacuum at 60 °C overnight for further use.

Synthesis of BP/c-CN

BP/c-CN hybrid is synthesized by a facile ball-milling process. The as-prepared bulk BP and c-CN were mixed with a mass ratio of 20:1. The mixed powder and stainless-steel balls (10, 10 mm in diameter; 10, 6 mm in diameter; 20, 2 mm in diameter) are placed in a stainless-steel jar (50 mL) and sealed in a glovebox under Ar atmosphere. The container is mounted on a high-energy ball milling device (MSK-SFM-LN-192, Hefei Kejing Co. Ltd), followed by ball-milling for 2h at a speed of 1000 rpm.

Computational Method

The density functional theory computations were carried out by the Vienna ab initio simulation package (VASP) using the projector augmented wave (PAW) method.²⁻⁴ The exchange-correlation potential was represented by the Perdew–Burke–Ernzerhof (PBE) functional within the generalized gradient approximation (GGA).⁵ The black phosphorus (010) and graphene (001) surfaces were used to construct the BP@C heterostructure, which has good lattice matching. The cutoff energy is set to 500 eV. The structures were relaxed until the convergence tolerances of energy and force were less than 1.0×10^{-5} eV/atom and 3.0×10^{-2} eV/Å. The *k*-point sampling grid is set to $3 \times 3 \times 1$ The vacuum layer is 15 Å. The DFT-D3 method is used to describe the van der Waals interaction.⁶ And, the adsorption energy (*E*_{ad}) of the H atom on BP@C was calculated by:

$$E_{ad} = E(sub + H) - E(sub) - 1/2E(H_2)$$
(1)

Where E(sub + H), E(sub), and $E(H_2)$ are the energy of H-adsorbed BP or BP@C, BP or BP@C, and an H₂ gas molecule, respectively.

Fig. S1 Zeta potential of all samples.

Fig. S2 The cross-section of the BP/c-CN@SCNT film.

Fig. S3 Stress-strain curves of BP/c-CN, SCNT, and BP/c-CN@SCNT-III films.

Fig. S4 Optical and SEM image of the pristine BP/c-CN film.

Fig. S5 (a) TEM, and (b) HRTEM images of BP/c-CN@SCNT-III sample (inset in panel b is the electron diffraction pattern).

(a)	C P N	C	P	N
100 nm	100 nm	1 <u>00 nm</u>	100 nm	100 nm
(b)	C P N	C	P	N
100 nm	100 nm	100 nm	100 nm	100 nm
(c)	C P N	C	P	№
100 nm	100 nm	100 nm	100 nm	100 nm

Fig. S6 EDS elemental mapping images of (a) BP/c-CN@SCNT-IV, (b) BP/c-CN@SCNT-III, and (c) BP/c-CN@SCNT-I.

Fig. S7 (a) XRD pattern, and (b) Raman spectra of all samples.

Samples	Thickness (µm)
BP/c-CN	4.9
BP/c-CN@SCNT-IV	4.8
BP/c-CN@SCNT-I	5.5
SCNT	5.0

Table S1 The thickness of the as-perpared film electrodes

Fig. S8 CV curves at scan rates from 1 to 10 V/s of the BP/c-CN@SCNT-III film-based FSC.

Fig. S9 (a) CV curves at the scan rate of 100 mV/s, (b) GCD curves at the current density of 0.5 A/g, and (c) The calculated specific capacitances under different scan rates of devices based on BP/c-CN@SCNT-I, BP/c-CN@SCNT-II, BP/c-CN@SCNT-III, and BP/c-CN@SCNT-IV.

Fig. S10 (a, b) CV curves at various scan rates from 5 to 900 mV/s, and (c) GCD curves of BP/c-CN@SCNT-I film-based FSC.

Fig. S11 (a, b) CV curves at various scan rates from 5 to 900 mV/s, and (c) GCD curves of

BP/c-CN@SCNT-II film-based FSC.

Fig. S12 (a, b) CV curves at various scan rates from 5 to 900 mV/s, and (c) GCD curves of

BP/c-CN@SCNT-IV film-based FSC.

Samples	Conductivity (S/m)
BP/c-CN	32
BP/c-CN@SCNT-IV (BP/CN: SCNT=30:1)	210
BP/c-CN@SCNT-III (BP/CN: SCNT=15:1)	877
BP/c-CN@SCNT-I (BP/CN: SCNT=1:1)	1250
SCNT	2150

 Table S2 The electrical conductivity of the samples obtained from the "four-probe method".

Fig. S13 The simplified configurational model of the BP@C interface.

Fig. S14 (a-c) Mercury intrusion-extrusion cycles for the BP/c-CN@SCNT-IV, BP/c-CN@SCNT-III, and BP/c-CN@SCNT-I film, respectively. The pore size distributions of (d) BP/c-CN@SCNT-IV, (e) BP/c-CN@SCNT-III, and (f) BP/c-CN@SCNT-I films obtained from MICP tests.

 Table S3 Structural pore parameters of BP/c-CN@SCNT-IV, BP/c-CN@SCNT-III, and

 BP/c-CN@SCNT-I films obtained from MICP tests.

Samplag	Total pore	Total intrusion	Porosity	Average pore
Samples	area (m ² /g)	volume (mL/g)	(%)	diameter (A) (nm)
BP/c-CN@SCNT-IV	19.36	0.53	26.26	214.93
BP/c-CN@SCNT- III	66.83	1.75	59.80	38.30
BP/c-CN@SCNT- I	21.98	1.18	35.90	109.94

Fig. S15 (a-c) N₂ adsorption/desorption isotherms of the BP/c-CN@SCNT-IV, BP/c-CN@SCNT-III, and BP/c-CN@SCNT-I films, respectively. (d-f) The BJH pore size distribution of BP/c-CN@SCNT-IV, BP/c-CN@SCNT-III, and BP/c-CN@SCNT-I films, respectively.

Table S4 Structural pore parameters of BP/c-CN@SCNT-IV, BP/c-CN@SCNT-III, andBP/c-CN@SCNT-I films obtained from N2 adsorption/desorption measurements.

Samples	BET surface area (m ² /g)	Pore volume (cm ³ /g)	Average pore diameter (nm)
BP/c-CN@SCNT-IV	38.94	0.14	63.93
BP/c-CN@SCNT- III	113.40	0.72	18.76
BP/c-CN@SCNT- I	52.06	0.36	1.35

 Table S5 Specific capacitance and cycling ability of our FSC compared with other BP-based supercapacitors.

Works	Material	Material Specific capacitance Electr		Iaterial Specific capacitance Electr		Cycle ability
This work	BP/c-CN@SCNT	108 F/cm ³ at 0 005 V/s	ΡVΔ/Η2ΡΩ4	100% after 50 000		
		100 Frem at 0.005 475	1 11/11/11/104	cycles		
		1455(3,00111/		84.5% after 10 000		
Dof 9			DVA/H.DO.	cycles		
Kel. o	DI Manonakes	14.5 F/cm at 0.01 V/S	1 VA/1131 O4	71.8% after 30 000		
				cycles		
D-f 0		41.1.5/ 3 /0.005.1/		91.5% after 10 000		
Kel. 9	DI/CIVIS	41.1 17cm at 0.005 V/S	1 VA/1131 O4	cycles		
Ref. 11	BP/Polyaniline		U SO	96% after 175		
		554 F/g at 0.5 A/g	H2SO4	cycles		
Pof 12	RD/Dolynymole	7.7 E/cm^3 at 0.5 A/g	Ρ.Υ.Α./ΗΡ.Ο.	99% after 10 000		
Ref. 12	DI /I OIYPYIIOIC	7.7 170m at 0.5 A/g	1 VA/1131 U4	cycles		
D 0 10	BP sponge	80 F/g at 0.01 V/s	PVA/H ₃ PO ₄	80.0% after 15 000		
Kcl. 42				cycles		
Ref 13	CNT/MnO ₂ -BP	$441.7 \mathrm{F/cm^3}$ at 0.01 V/s	Ρνα/κομ	90.5% after 10 000		
Kel.45		++1./1/cm at 0.01 v/s	I VA/KOII	cycles		
Ref. 44	BP-CNTs	308.7 F cm ⁻³ at 0.1	EMIMBF ₄ /P	90.2% after 10 000		
		A/cm ³	VDF-HFP	cycles		
Ref.45	BP/Mxene	896.87 F/cm ³ at 0.69	DVA/H.SO.	91.74% after		
		A/cm ³	1 VA/112504	10 000 cycles		
Ref.46	BP/Mxene	361.9 F/cm ³ at 0.1 V/s	Na ₂ SO ₄ /CM	90.9% after		
			С	40 000 cycles		
Ref.47	BP/Polynyrrole	417 F/σ at 0.2 A/σ	EMI-TFSI	87% after		
	ыттонуруное	11, 1, g at 0.219 g		10 000 cycles		

Fig. S16 Cycling stability and coulombic efficiency at a current density of 1.0 A/cm³ for (a) BP-based FSC and (b) BP/c-CN-based FSC.

Fig. S17 XRD images of (a) BP/c-CN@SCNT-III and (b) BP/c-CN after 6 months under ambient conditions.

Fig. S18 Specific capacitance at various scan rates of BP/c-CN@SCNT-III after 6 months under ambient conditions.

Fig. S19 SEM image of the BP/c-CN-III film after 50 000 cycling tests.

Fig. S20 High-resolution P 2p XPS spectra of (a, c, e) BP/c-CN@SCNT-III, and (b, d, f) BP/c-CN after different cycles.

Table S6. High-resolution P2p XPS analysis of BP/c-CN@SCNT-III and BP/c-CN samples
after different cycles.

Bonding type		P-C	P-O	P2p _{3/2}	P2p _{1/2}
Sample		/at%	/at%	/at%	/at%
	Pristine sample	16.5	11.6	55.9	16.0
BP/c-CN@SCNT-III	After 32 000 cycles	20.0	16.50	46.5	17.0
	After 50 000 cycles	21.8	17.7	44.5	16.0
	Pristine sample	19.9	17.1	47.2	15.8
BP/c-CN	After 32 000 cycles	14.9	42.7	25.1	17.3
	After 50 000 cycles	8.9	76.9	6.0	8.2

Fig. S21 Nyquist plots of (a) BP/c-CN@SCNT-III and (b) BP/c-CN film-based device before and after 50 000 cycles.

Reference

- 1. M. Shi, T. Wu, X. Song, J. Liu, L. Zhao, P. Zhang and L. Gao, *J. Mater. Chem. A*, 2016, **4**, 10666-10672.
- 2. G. Kresse and D. Joubert, Phys. Rev. B, 1999, 59, 1758.
- 3. G. Kresse and J. Furthmüller, Comp. Mater. Sci., 1996, 6, 15-50..
- 4. G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54, 11169.
- 5. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
- K. Lee, É. D. Murray, L. Kong, B. I. Lundqvist and D. C. Langreth, *Phys. Rev. B*, 2010, 82, 081101.