Black phosphorus hybrid film enabled by covalently chemical and spatial hierarchicallocking effect for flexible supercapacitors with 100% cycling stability

Xipeng Xin,^a Yifeng Xu,^a Min Zhou,^a Qingdong Liu,^a Jingyu Fan,^a Wei Chen,^b Jijin Xu,^a

Jing Liu, ^a Lian Gao, ^a Kunpeng Zhao, ^a Xuefeng Song.*, a

^a School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai,

200240, China.

^b Baosteel Roll Science &Technology Co., Ltd, Changzhou 213023, China.

E-mail address: songxfeng@sjtu.edu.cn (X.F. Song); Tel: +86-21-34203744

† Electronic supplementary information (ESI) available.

Experimental section

Synthesis of BP

Bulk BP is synthesized through a facile high-energy ball milling method. Red phosphorus (RP) powder (Alfa Aesar, 99.99%, 800 mg) and stainless steel balls (11, 10 mm in diameter; 10, 6 mm in diameter; 20, 2 mm in diameter) were put into a stainless steel vessel (50 mL) and sealed in an argon-filled glove box. The milling process was carried out with a rotation rate of 1200 rpm for 2 h using the high-energy ball milling Instrument (MSK-SFM-LN-192, Hefei Kejing Co. Ltd). This procedure is applied to transform RP into BP.

Synthesis of c-CN

Conductive c-CN material is synthesized by a "molten salt reduction denitriding" route from pristine g-C3N4. The pristine g-C3N4 is first prepared by a simple calcination method according to our previous work.¹ Then, the obtained g-C₃N₄, Mg powder, and AlCl₃ were homogeneously mixed and loaded in a stainless-steel autoclave and heated at 200 °C for 10h. After cooling to room temperature naturally, the collected precipitate was put in 0.1 M hydrochloric acid and stirred for several hours. Afterward, the product was washed with distilled water and ethanol until the solution was neutral. Finally, the product was dried in a vacuum at 60 °C overnight for further use.

Synthesis of BP/c-CN

BP/c-CN hybrid is synthesized by a facile ball-milling process. The as-prepared bulk BP and c-CN were mixed with a mass ratio of 20:1. The mixed powder and stainless-steel balls (10, 10 mm in diameter; 10, 6 mm in diameter; 20, 2 mm in diameter) are placed in a stainless-steel jar (50 mL) and sealed in a glovebox under Ar atmosphere. The container is mounted on a highenergy ball milling device (MSK-SFM-LN-192, Hefei Kejing Co. Ltd), followed by ballmilling for 2h at a speed of 1000 rpm.

Computational Method

The density functional theory computations were carried out by the Vienna ab initio simulation package (VASP) using the projector augmented wave (PAW) method.²⁻⁴ The exchangecorrelation potential was represented by the Perdew–Burke–Ernzerhof (PBE) functional within the generalized gradient approximation (GGA) .⁵ The black phosphorus (010) and graphene (001) surfaces were used to construct the BP $@C$ heterostructure, which has good lattice matching. The cutoff energy is set to 500 eV. The structures were relaxed until the convergence tolerances of energy and force were less than 1.0×10^{-5} eV/atom and 3.0×10^{-2} eV/Å. The *k*-point sampling grid is set to $3\times3\times1$ The vacuum layer is 15 Å. The DFT-D3 method is used to describe the van der Waals interaction. ⁶ And, the adsorption energy (*E*ad) of the H atom on BP or BP@C was calculated by:

$$
E_{\text{ad}} = E(\text{sub} + \text{H}) - E(\text{sub}) - 1/2E(\text{H}_2)
$$
\n
$$
\tag{1}
$$

Where $E(\text{sub} + H)$, $E(\text{sub})$, and $E(H_2)$ are the energy of H-adsorbed BP or BP@C, BP or BP@C, and an H2 gas molecule, respectively.

Fig. S1 Zeta potential of all samples.

Fig. S2 The cross-section of the BP/c-CN@SCNT film.

Fig. S3 Stress-strain curves of BP/c-CN, SCNT, and BP/c-CN@SCNT-Ⅲ films.

Fig. S4 Optical and SEM image of the pristine BP/c-CN film.

Fig. S5 (a) TEM, and (b) HRTEM images of BP/c-CN@SCNT-Ⅲ sample (inset in panel b is the electron diffraction pattern).

(a)	P M	\overline{c}	P	N
100 nm	100 nm	100 nm	100 nm	100 nm
\vert (b)	ICPN	$\overline{\mathsf{c}}$	P	100 nm
100 nm	HOO nm	100 nm	100 nm	
(c)	P	$\overline{\mathsf{C}}$	P	100 nm
100 nm	100 nm	100 nm	100 nm	

Fig. S6 EDS elemental mapping images of (a) BP/c-CN@SCNT-Ⅳ, (b) BP/c-CN@SCNT-Ⅲ, and (c) BP/c-CN@SCNT-Ⅰ.

Fig. S7 (a) XRD pattern, and (b) Raman spectra of all samples.

Samples	Thickness (µm)
BP/c -CN	4.9
BP/c-CN@SCNT-IV	4.8
BP/c-CN@SCNT-I	5.5
SCNT	5.0

Table S1 The thickness of the as-perpared film electrodes

Fig. S8 CV curves at scan rates from 1 to 10 V/s of the BP/c-CN@SCNT-III film-based FSC.

Fig. S9 (a) CV curves at the scan rate of 100 mV/s, (b) GCD curves at the current density of 0.5 A/g, and (c) The calculated specific capacitances under different scan rates of devices based on BP/c-CN@SCNT-I, BP/c-CN@SCNT-II, BP/c-CN@SCNT-III, and BP/c-CN@SCNT-Ⅳ.

Fig. S10 (a, b) CV curves at various scan rates from 5 to 900 mV/s, and (c) GCD curves of BP/c-CN@SCNT-I film-based FSC.

Fig. S11 (a, b) CV curves at various scan rates from 5 to 900 mV/s, and (c) GCD curves of

BP/c-CN@SCNT-II film-based FSC.

Fig. S12 (a, b) CV curves at various scan rates from 5 to 900 mV/s, and (c) GCD curves of

BP/c-CN@SCNT-Ⅳ film-based FSC.

Table S2 The electrical conductivity of the samples obtained from the "four-probe method".

Fig. S13 The simplified configurational model of the BP@C interface.

Fig. S14 (a-c) Mercury intrusion-extrusion cycles for the BP/c-CN@SCNT-Ⅳ, BP/c-CN@SCNT-III, and BP/c-CN@SCNT-I film, respectively. The pore size distributions of (d) BP/c-CN@SCNT-Ⅳ, (e) BP/c-CN@SCNT-III, and (f) BP/c-CN@SCNT-I films obtained from MICP tests.

Table S3 Structural pore parameters of BP/c-CN@SCNT-Ⅳ, BP/c-CN@SCNT-III, and BP/c-CN@SCNT-I films obtained from MICP tests.

	Total pore	Total intrusion	Porosity	Average pore
Samples	area (m^2/g)	volume (mL/g)	(%)	diameter (A) (nm)
BP/c-CN@SCNT-IV	19.36	0.53	26.26	214.93
BP/c-CN@SCNT-III	66.83	1.75	59.80	38.30
BP/c-CN@SCNT-I	21.98	1.18	35.90	109.94

Fig. S15 (a-c) N2 adsorption/desorption isotherms of the BP/c-CN@SCNT-Ⅳ, BP/c-CN@SCNT-III, and BP/c-CN@SCNT-I films, respectively. (d-f) The BJH pore size distribution of BP/c-CN@SCNT-IV, BP/c-CN@SCNT-III, and BP/c-CN@SCNT-I films, respectively.

Table S4 Structural pore parameters of BP/c-CN@SCNT-Ⅳ, BP/c-CN@SCNT-III, and BP/c-CN@SCNT-I films obtained from N₂ adsorption/desorption measurements.

Samples	BET surface area (m^2/g)	Pore volume $\rm(cm^3/g)$	Average pore diameter (nm)
BP/c-CN@SCNT-IV	38.94	0.14	63.93
BP/c-CN@SCNT-III	113.40	0.72	18.76
BP/c-CN@SCNT-I	52.06	0.36	1.35

Table S5 Specific capacitance and cycling ability of our FSC compared with other BP-based supercapacitors.

Fig. S16 Cycling stability and coulombic efficiency at a current density of 1.0 A/cm³ for (a) BP-based FSC and (b) BP/c-CN-based FSC.

Fig. S17 XRD images of (a) BP/c-CN@SCNT-Ⅲ and (b) BP/c-CN after 6 months under ambient conditions.

Fig. S18 Specific capacitance at various scan rates of BP/c-CN@SCNT-Ⅲ after 6 months under ambient conditions.

Fig. S19 SEM image of the BP/c-CN-Ⅲ film after 50 000 cycling tests.

Fig. S20 High-resolution P 2p XPS spectra of (a, c, e) BP/c-CN@SCNT-Ⅲ, and (b, d, f) BP/c-CN after different cycles.

Fig. S21 Nyquist plots of (a) BP/c-CN@SCNT-Ⅲ and (b) BP/c-CN film-based device before and after 50 000 cycles.

Reference

- 1. M. Shi, T. Wu, X. Song, J. Liu, L. Zhao, P. Zhang and L. Gao, *J. Mater. Chem. A*, 2016, **4**, 10666-10672.
- 2. G. Kresse and D. Joubert, *Phys. Rev. B*, 1999, **59**, 1758.
- 3. G. Kresse and J. Furthmüller, *Comp.Mater. Sci.*, 1996, **6**, 15-50..
- 4. G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169.
- 5. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865.
- 6. K. Lee, É. D. Murray, L. Kong, B. I. Lundqvist and D. C. Langreth, *Phys. Rev. B*, 2010, **82**, 081101.