Electronic supplementary information

Ultrahigh energy storage capacities in high-entropy relaxor ferroelectrics

Yunyao Huang,^a Kaili Shang,^a Yule Yang,^a Wenjing Shi,^a Leiyang Zhang,^a Vladimir Laletin,^b

Vladimir Shur,^c Ruiyi Jing,^a Li Jin^{a,*}

^aElectronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China. E-mail: <u>ljin@mail.xjtu.edu.cn</u> ^b Institute of Technical Acoustics, National Academy of Sciences of Belarus, Vitebsk, 210009, Belarus

^c School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620000, Russia

1. Material and methods

High-entropy $(1-x)(Bi_{0.375}Na_{0.3}Sr_{0.25}K_{0.075})TiO_3-xBi(Mg_{0.5}Sn_{0.5})O_3$ ceramics (abbreviated as BNT-H100x) with x = 0.05, 0.10, 0.15, and 0.20 were synthesized through solid-reaction method with original materials including Bi₂O₃ (>99%), Na₂CO₃ (>99.8%), K₂CO₃ (>99%), TiO₂ (>98%), SrCO₃ (>99%), SnO₂ (>99.5%), and MgO (>98.5%) powders. The raw materials were dried at 110 °C for 12 h and then they were mixed by ball-milling in ethanol for 4 h. The mixed materials were then calcined at 880 °C for 2 h before they were ball-milled again for another 4 h. Powders obtained after drying were pressed into discs with a diameter of 9 mm and a thickness of 1 mm by isostatic pressure. These discs were sintered at 1180 °C for 120 min with a heating rate of 3 °C/min. For the VPP treatment, all powders were ball-milled again with 5% PVA solution to create a viscous substance. Then it was rolled into 0.6 mm thick flakes and cut into discs with a diameter of 10 mm. These discs produced by VPP was sintered at 1130 °C for 90 mins.

X-ray diffractometer (XRD; Panalytical, Cambridge, UK) was used to investigate phase structures of the samples. Sintered bulk ceramics were grinded into powders and then annealed at 500 °C for 4 h to relieve the internal stress. The TEM testing sample was fabricated by focused ion beam milling (FIB, Helios G4 CX, FEI, USA). A scanning electron microscope (SEM; quanta, FEG 250, FEI, Hillsboro, USA) was used to observes fresh surface of the sintered ceramics. The dark field images, the selected area electron diffraction (SAED) pattern, and high-resolution transmission electron microscope images were obtained by the spherical aberration corrected transmission electron microscope (AC-TEM, Titan Cubed Themis G2300, FEI, USA). The dielectric properties of ceramics were tested using a multi-frequency LCR meter (E4980AL, Keysight, USA). The test temperature was 30–450 °C and heat up at a rate of 3 °C/min. The test frequencies were 0.3, 1, 10, 100, and 1000 kHz. A ferroelectric instrument (TF analyzer 2000E, aixACCT, Aachen, Germany) was used to measure the hysteresis loops and current curves. The test samples were grinded to 2 mm thick and then coated with gold electrode on both sides. The pulsed behavior was collected through a charge-discharge instrument (CFD-003, Gogo Instruments Technology, China).

Fig. S1. Results of structure refinement for BNT-H100x ceramics. (a) x = 0.05, (b) x = 0.10, (c) x = 0.15, and (d) x = 0.20.

Fig. S2. Normalized $\varepsilon_{1 \text{ kHz}} - \varepsilon_{100 \text{ kHz}}$ as a function of temperature from RT to 400 °C. Here $\varepsilon_{1 \text{ kHz}}$ and $\varepsilon_{100 \text{ kHz}}$ were the ε_r measured at 1 kHz and 100 kHz, respectively. The characteristic temperature (T_s) is indicated by the vertical arrow.

Table S1

x	0.05	0.10	0.15	0.20
$S_{ m config}$	1.49 <i>R</i>	1.63 <i>R</i>	1.73 <i>R</i>	1.82 <i>R</i>

Atomic configurational entropy S_{config} of BNT-H100x ceramics.

Table S2

Chemical formula		x = 0.5	<i>x</i> = 1.0	<i>x</i> = 1.5	<i>x</i> = 2.0
Space group		P4bm	P4bm	P4bm	P4bm
C_{11}	а	5.5456(9)	5.5494(3)	5.5595(6)	5.5672(9)
Cell parameter (A)	С	3.9208(7)	3.9234(4)	3.9308(2)	3.9365(4)
Density (g/cm ³)		5.842(1)	6.002(3)	6.133(1)	6.273(9)
Volume (Å ³)		120.585	120.827	121.496	6.246
D factors	R_{wp}	5.813	6.038	5.762	5.71
K-factors	χ^2	2.64	2.68	2.63	2.84
No. of profile points		6005	6005	6005	6005

Rietveld crystal refinement parameters of BNT-H100x ceramics.

Table S3

Comparison of ESP between various representative lead-free systems.

Commention	Ε	W _{rec}	η (%)	Ref.
Composition	(kV/cm)	(J/cm ³)		
$0.7374Na_{0.5}Bi_{0.5}TiO_3$ - $0.2625BaSnO_3$	200	1.99	8.6	1
$0.94(0.65Bi_{0.5}Na_{0.5}TiO_3-0.35Bi_{0.1}Sr_{0.85}TiO_3)-$	100	2 (5	04.6	2
0.06(K _{0.5} Na _{0.5} NbO ₃)	180	2.65	84.6	2
0.55BNT-0.45(Bi _{0.2} Sr _{0.7} TiO ₃)	200	2.5	95	3
$0.96(0.65BNT-0.35Sr_{0.85}Bi_{0.1}TiO_3)-0.04NaNbO_3$	220	3.08	81.4	4
0.5BNT-0.5SrTiO ₃ -1.5 mol% CuO	230	2.2	72.39	5
0.9(0.7BNT-0.3SrTiO ₃)-0.1Bi(Nb _{0.5} Mg _{0.5})O ₃	240	3.46	78	6
$0.6BNT-0.4Sr_{0.7}Sm_{0.2}TiO_3$	260	3.52	84.2	7
$0.90(Na_{0.5}Bi_{0.5})_{0.7}Sr_{0.3}TiO_3$ - $0.10Bi(Ni_{0.5}Sn_{0.5})O_3$	270	4.18	83.64	8
$0.6(Bi_{0.51}Na_{0.47})TiO_3$ - $0.4Ba(Zr_{0.3}Ti_{0.7})O_3$	280	3.1	91	9
$0.6(Ba_{0.7}Sr_{0.3})(Zr_{0.2}Ti_{0.8})O_3$ - $0.4(Na_{0.5}Bi_{0.5})TiO_3$	289	3.72	94.3	10
$(Na_{0.25}Bi_{0.25}Sr_{0.5})(Ti_{0.8}Sn_{0.2})O_3$	310	3.4	90	11
0.9(0.65 BNT-0.35Bi _{0.2} Sr _{0.7} TiO ₃)-0.1CaZrO ₃	330	2.9	80	12
$0.85(0.55BNT-0.45Sr_{0.7}La_{0.2}TiO_3)$ -	220	2 00	95	13
0.15Bi(Mg _{2/3} Nb _{1/3})O ₃	338	3.88	85	15
$0.65(0.84BNT-0.16K_{0.5}Bi_{0.5}TiO_3)-0.35(Bi_{0.2}Sr_{0.7}TiO_3)$	350	4.06	87.3	14
$0.88BNT-0.12CaZr_{0.5}Ti_{0.5}O_3$	378.3	4.77	69	15
$0.8 (0.65BNT \text{-} 0.35Bi_{0.2}Sr_{0.7}TiO_3) \text{-} 0.2BaSnO_3$	380	3.75	84.8	16
$0.85(0.94BNT-0.06BaTiO_3)-0.15BiMg_{2/3}Nb_{1/3}O_3$	420	6.3	80	17
$(Na_{0.5}Bi_{0.5})_{0.7}Sr_{0.3}TiO_3\text{-}Ba(Mg_{1/3}Nb_{2/3})O_3$	460	5.5	90.1	18
$0.90 (Bi_{0.5} Na_{0.5})_{0.65} Sr_{0.35} TiO_3 0.10 Bi (Mg_{0.5} Zr_{0.5})O_3$	522	8.46	85.9	19
$0.75Bi_{0.58}Na_{0.42}TiO_3$ - $0.25SrTiO_3$	535	5.63	94	20
0.7(0.85BNT-0.15NaNbO ₃)-0.3(Sr _{1.05} Bi _{0.3})ScO ₃	540	7.3	80	21
BSZT-BMN	552	5.92	81.7	22
$(Bi_{0.5}(Na_{0.8}K_{0.2})_{0.5})_{0.96}Sr_{0.04}Ti_{0.99}Ta_{0.01}O_3-0.70BNT-$	572	6.78	89.7	23

0.30SrNb _{0.5} Al _{0.5} O ₃				
$0.96(0.8 NaNbO_3 - 0.2 SrTiO_3) - 0.04 Bi(Zn_{0.5} Sn_{0.5})O_3$	570	5.82	92.3	24
$0.78 NaNbO_3$ - $0.22 Bi(Mg_{2/3}Ta_{1/3})O_3$	620	5.01	86.8	25
$Bi_{1.5}Zn_{0.75}Mg_{0.25}Nb_{0.75}Ta_{0.75}O_7$	650	2.72	91	26
$(Ag_{0.80}Bi_{0.04}Sr_{0.04})NbO_3$	720	7.9	75.5	27
$0.85(Ba_{0.8}Sr_{0.2})TiO_3$ - $0.15Bi(Mg_{0.5}Zr_{0.5})O_3$	720	10.3	88	28
$(Na_{0.91}Bi_{0.09})(Nb_{0.94}Mg_{0.06})O_3$	783	10.9	83	29
$0.75[0.9NN-0.1Bi(Mg_{0.5}Ta_{0.5})O_3]$ -	000	8	90.4	30
	800			
$0.25(Bi_{0.5}Na_{0.5})0.7Sr_{0.3}TiO_3$		-	2000	
$0.25(Bi_{0.5}Na_{0.5})0.7Sr_{0.3}TiO_3$ $0.85K_{0.5}Na_{0.5}NbO_3-0.15SrTiO_3$	400	4.03	52	31
0.25(Bi _{0.5} Na _{0.5})0.7Sr _{0.3} TiO ₃ 0.85K _{0.5} Na _{0.5} NbO ₃ -0.15SrTiO ₃ 0.8K _{0.5} Na _{0.5} NbO ₃ -0.2SrTiO ₃	400 400	4.03 3.67	52 72.1	31
$0.25(Bi_{0.5}Na_{0.5})0.7Sr_{0.3}TiO_3$ $0.85K_{0.5}Na_{0.5}NbO_3-0.15SrTiO_3$ $0.8K_{0.5}Na_{0.5}NbO_3-0.2SrTiO_3$ $0.92NaNbO_3-0.08Bi(Mg_{0.5}Ti_{0.5})O_3$	400 400 480	4.03 3.67 5.57	52 72.1 71	31 32
$\begin{array}{l} 0.25({\rm Bi}_{0.5}{\rm Na}_{0.5})0.7{\rm Sr}_{0.3}{\rm TiO}_3\\ \\ 0.85{\rm K}_{0.5}{\rm Na}_{0.5}{\rm NbO}_3\text{-}0.15{\rm Sr}{\rm TiO}_3\\ \\ 0.8{\rm K}_{0.5}{\rm Na}_{0.5}{\rm NbO}_3\text{-}0.2{\rm Sr}{\rm TiO}_3\\ \\ 0.92{\rm Na}{\rm NbO}_3\text{-}0.08{\rm Bi}({\rm Mg}_{0.5}{\rm Ti}_{0.5}){\rm O}_3\\ \\ {\rm Ba}{\rm TiO}_3\text{-}0.06{\rm Bi}_{2/3}({\rm Mg}_{1/3}{\rm Nb}_{2/3}){\rm O}_3\end{array}$	400 400 480 520	4.03 3.67 5.57 4.55	52 72.1 71 91	31 32 33

References

- 1. L. Zhang, Y. Pu, M. Chen, R. Li, X. Guo and Y. Cui, *Ceramics International*, 2018, 44, S207-S210.
- Z. Pan, D. Hu, Y. Zhang, J. Liu, B. Shen and J. Zhai, *Journal of Materials Chemistry C*, 2019, 7, 4072-4078.
- 3. J. Li, F. Li, Z. Xu and S. Zhang, *Advanced Materials*, 2018, **30**, 1802155.
- 4. Y. Wu, Y. Fan, N. Liu, P. Peng, M. Zhou, S. Yan, F. Cao, X. Dong and G. Wang, Journal of Materials Chemistry C, 2019, 7, 6222-6230.
- 5. F. Zhang, X. Qiao, Q. Shi, X. Chao, Z. Yang and D. Wu, *Journal of the European Ceramic Society*, 2021, **41**, 368-375.
- 6. Y. Ding, J. Liu, C. Li, W. Bai, S. Wu, P. Zheng, J. Zhang and J. Zhai, *Chemical Engineering Journal*, 2021, **426**, 130811.
- X. Qiao, A. Sheng, D. Wu, F. Zhang, B. Chen, P. Liang, J. Wang, X. Chao and Z. Yang, Chemical Engineering Journal, 2021, 408, 127368.
- 8. D. Li, Y. Lin, Q. Yuan, M. Zhang, L. Ma and H. Yang, *Journal of Materiomics*, 2020, **6**, 743-750.
- 9. Y. Huang, F. Li, H. Hao, F. Xia, H. Liu and S. Zhang, *Journal of Materiomics*, 2019, **5**, 385-393.
- Y. Wang, T. Wang, J. Wang, J. Liu, Z. Xing, H. Yang, L. Kong, Y. Cheng, G. Chen, F. Wang and C. Li, *Journal of the European Ceramic Society*, 2021, 41, 6474-6481.
- 11. L. Yang, X. Kong, Z. Cheng and S. Zhang, *Journal of Materials Chemistry A*, 2019, 7, 8573-8580.
- X. Guo, P. Shi, X. Lou, Q. Liu and H. Zuo, *Journal of Alloys and Compounds*, 2021, 876, 160101.
- 13. J. Zhu, Z. Ma, Q. Su, X. Meng, Y. Zhao, Y. Li and X. Hao, *Journal of Materials Science: Materials in Electronics*, 2021, **32**, 26258-26267.
- 14. D. Hu, Z. Pan, X. Zhang, H. Ye, Z. He, M. Wang, S. Xing, J. Zhai, Q. Fu and J. Liu, *Journal of Materials Chemistry C*, 2020, **8**, 591-601.
- 15. S. Bian, Z. Yue, Y. Shi, J. Zhang and W. Feng, *Journal of the American Ceramic Society*, 2021, **104**, 936-947.
- P. Shi, X. Zhu, X. Lou, B. Yang, X. Guo, L. He, Q. Liu, S. Yang and X. Zhang, Composites Part B: Engineering, 2021, 215, 108815.
- 17. B. Guo, Y. Yan, M. Tang, Z. Wang, Y. Li, L. Zhang, H. Zhang, L. Jin and G. Liu, *Chemical Engineering Journal*, 2021, **420**, 130475.
- 18. X. Li, Y. Cheng, F. Wang, Q. Xu, Y. Chen, L. Xie, Z. Tan, J. Xing and J. Zhu, Chemical

Engineering Journal, 2022, **431**, 133441.

- 19. X. P. Zhu, Y. F. Gao, P. Shi, R. R. Kang, F. Kang, W. J. Qiao, J. Y. Zhao, Z. Wang, Y. Yuan and X. J. Lou, *Nano Energy*, 2022, **98**.
- 20. F. Yan, K. Huang, T. Jiang, X. Zhou, Y. Shi, G. Ge, B. Shen and J. Zhai, *Energy Storage Materials*, 2020, **30**, 392-400.
- C. Zhang, W. Xiao, F. Zeng, D. Su, K. Du, S. Qiu, G. Fan, W. Lei, H. Zhang, S. Jiang, J.-M. Wu and G. Zhang, *Journal of Materials Chemistry A*, 2021, 9, 10088-10094.
- 22. W. Huang, Y. Chen, X. Li, G. Wang, J. Xia and X. Dong, *Chemical Engineering Journal*, 2022, 444, 135523.
- 23. F. Yan, H. Bai, X. Zhou, G. Ge, G. Li, B. Shen and J. Zhai, *Journal of Materials Chemistry A*, 2020, **8**, 11656-11664.
- 24. R. Kang, Z. Wang, W. Yang, X. Zhu, P. Shi, Y. Gao, P. Mao, J. Zhao, L. Zhang and X. Lou, *Journal of Materials Chemistry A*, 2021, **9**, 24387-24396.
- 25. J. Shi, X. Chen, X. Li, J. Sun, C. Sun, F. Pang and H. Zhou, *Journal of Materials Chemistry C*, 2020, **8**, 3784-3794.
- Y. Chen, J. Qi, M. Zhang, Z. Luo and Y.-H. Lin, *Journal of Advanced Ceramics*, 2022, 11, 1179-1185.
- 27. H. Yuan, X. H. Fan, Z. H. Zheng, M. Y. Zhao, L. Zhao, K. J. Zhu and J. Wang, *Chemical Engineering Journal*, 2023, **456**.
- 28. W. Wang, L. Y. Zhang, C. Li, D. O. Alikin, V. Y. Shur, X. Y. Wei, F. Gao, H. L. Du and L. Jin, *Chemical Engineering Journal*, 2022, **446**.
- J. Jiang, X. J. Meng, L. Li, J. Zhang, S. Guo, J. Wang, X. H. Hao, H. G. Zhu and S. T. Zhang, *Chemical Engineering Journal*, 2021, 422.
- H. Chen, J. Shi, X. Chen, C. Sun, F. Pang, X. Dong, H. Zhang and H. Zhou, *Journal of Materials Chemistry A*, 2021, 9, 4789-4799.
- Z. Yang, H. Du, S. Qu, Y. Hou, H. Ma, J. Wang, J. Wang, X. Wei and Z. Xu, *Journal of Materials Chemistry A*, 2016, 4, 13778-13785.
- 32. A. Tian, R. Zuo, H. Qi and M. Shi, *Journal of Materials Chemistry A*, 2020, **8**, 8352-8359.
- H. Yang, Z. Lu, L. Li, W. Bao, H. Ji, J. Li, A. Feteira, F. Xu, Y. Zhang, H. Sun, Z. Huang, W. Lou, K. Song, S. Sun, G. Wang, D. Wang and I. M. Reaney, ACS Applied Materials & Interfaces, 2020, 12, 43942-43949.