Crystal structure, Magnetotransport properties, and

Electronic band structure of V_{1-x}Ti_xSe₂ single crystals

Lina Sang^{1,4}, Meng Yuan¹, Jinshi Zhao¹, Guangsai Yang^{1†}, Frank Fei Yun², Zhi

Li^{2,3,4†}, and Xiaolin Wang^{2,4†}

¹Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China

²Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW 2525, Australia

³School of Materials Science and Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia

⁴ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), University of Wollongong, Wollongong, NSW 2525, Australia

†To whom correspondence should be addressed: ygsai@email.tjut.edu.cn; zhi.li5@unsw.edu.au and xiaolin@uow.edu.au

Figure S1 shows the VSe₂ and TiSe₂ single crystals synthesized by using the conventional solid-state method. The SEM-EDS mapping of $V_{0.5}Ti_{0.5}Se_2$ presented in Figure S1b indicates that the Ti, V, and Se elements were evenly distributed over the surface.

Figure S1 V_{1-x} Ti_xSe₂ single crystal: a. VSe₂ and TiSe₂ single crystals. b. Scanning

electron microscope (SEM) image and energy dispersive spectroscopy (EDS)

mapping of Ti, V, and Se for V_{0.5}Ti_{0.5}Se₂.

The universal effect that deficiency in the chalcogen site could change the shape of the Fermi surface and the transport properties. Since the deficiency in the chalcogen site dopes electron to the system and leads lower resistivity, and the electron doping effect can also shift the Fermi surface.^{1,2} The content of V, Ti and Se in $V_{1-x}Ti_xSe_2$ samples was acquired on a Thermo Fisher Scientific iCAP RQ inductive (America) coupled plasma mass spectrometer (ICP-MS), as shown in the table below. The ICP-MS results of $V_{0.5}Ti_{0.5}Se_2$ analysis reveals that the ratios of V: Ti: Se were 1: 1: 4 and 1: 1: 4 denoted as S1 and S2. The Se contents were calculated to be 7.55 and 7.58 mg g⁻¹ in S1 and S2, respectively. The results indicate a slight deficiency of Se (0.3%) in the samples, but the molar ratios are generally consistent with the molecular formula.

ICP-MS results of $V_{0.5}Ti_{0.5}Se_2$				
Sample	Element	Exp	Cal	Mass Ratio(wt%)
S1	V	0.5	0.500	0.122
	Ti	0.5	0.528	0.121
	Se	2.0	1.988	0.755
S2	V	0.5	0.500	0.122
	Ti	0.5	0.528	0.121
	Se	2.0	1.994	0.758

Tabl S1. Elemental compositions of the samples.

References

- Rukshana Pervin1, Manikandan Krishnan, Arumugam Sonachalam, and Parasharam M. Shirage1, J Mater Sci (2019) 54:11903–11912
- J. S. Chen, J. K. Wang, S. V. Carr, S. C. Vogel, O. Gourdon, P. Dai, E. Morosan, *Phys. Rev. B*, 2015, 91, 045125.