Conjugated Polymer Electrodes Fabricated Using Rylene-Based Acceptors Toward High Energy and Power Density Symmetric Supercapacitor Operable in Organic Electrolyte Environment

Subir K. Pati¹, Dhananjaya Patra^{1,*}, Sunita Muduli², Sabyashachi Mishra², Sungjune Park^{1,*}

¹School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea

²Department of Chemistry, Indian Institute of Technology, Kharagpur-721302, India

*Corresponding author email: <u>itspilu@gmail.com</u>, <u>sungjunepark@skku.edu</u>

CONTENTS	Page No.
1. Experimental Details	4-5
2. Computational Details	6
3. Electrochemical measurements	6-7
Scheme 1. Synthetic routes of the monomers	8
Scheme 2. Synthesis of BT-NDI/PDI-based polymers	9
Synthesis of monomers	10
General procedure for the synthesis of BT-NDI/PDI -based polymers	11
Supplementary Figure S1. ¹ H- and ¹³ C-NMR spectra of monomer M2 in CDCl ₃ .	12
Supplementary Figure S2. ¹ H- and ¹³ C-NMR spectra of monomer M3 in CDCl ₃ .	13
Supplementary Figure S3. 1H- NMR spectra of Polymer (a) BT-NDI and (b) BT-PDI CDCl ₃	14
Supplementary Figure S4.	15
(a) Gel permeation chromatography (GPC) molecular weight (M_w) of the copolymer BT-NDI	
(b) Gel permeation chromatography (GPC) molecular weight (M_w) of the copolymer BT-PDI	16
Supplementary Figure S5. TGA thermograms of copolymers BT-NDI , and BT-PDI under N ₂ flow at 10 °C min ⁻¹ .	17
Supplementary Table T1. Summary of literature survey on similar types of n-type polymer based supercapacitor materials	18
Supplementary Table T2. Distribution of individual elements (Wt% and Atomic %) from HRTEM EDS	19
(b) Comparison of distribution of individual elements (Atomic %) from HRTEM EDS and Calculation	19
Supplementary Figure S6. The C _{dl} values for ECSA study, showing the corresponding linear fits of BT-NDI and BT-PDI	20
Supplementary Figure S7 . The geometry-optimized structures of BT-NDI in (a) monomeric and (c) dimeric forms and BT-PDI in (b) monomeric and (d) dimeric forms, respectively.	21

Supplementary Figure S8 . Dihedral angles between the repeating units of the dimers of the BT-NDI and BT-PDI series	21
Supplementary Table T3. Dihedrals of the optimized geometries of (a) BT-NDI and (b) BT-PDI dimers.	22
Supplementary Figure S9. The HOMO-LUMO energy diagrams of the monomeric units of (a) BT-NDI and (b) BT-PDI moieties, dimeric units of (c) BT-NDI and (d) BT-PDI moieties.	23
Supplementary Table T4. The HOMO and LUMO energy levels and the HOMO-LUMO energy gap (eV) for monomer, dimer, and trimer of BT-NDI and BT-PDI .	24
Supplementary Figure S10. NTO of the monomers and dimers of the BT-NDI and BT-PDI series	25
Supplementary Table T5. The absorption maxima (λ_{max}) corresponds to the characteristic UV-Vis absorption calculated from the TD-DFT method for the monomer, dimer, and trimer of BT-NDI and BT-PDI .	25
Supplementary Figure S11. Normalized UV-vis absorption spectra of BT-NDI and BT-PDI	26
Supplementary Table T6. Optical and electrochemical properties of BT-NDI and BT-PDI .	27
Supplementary Figure S12. (a) CV at 100 mV s ⁻¹ scan rate, (b) GCD at 1 A g ⁻¹ current density for the individual monomer units of BT, NDI and PDI, (c) Effect of applied current/potential on the monomeric working electrodes.	28
Supplementary Figure S13. (a) CV curves at different scan rates and (b) GCD curves at varying current densities for the BT-NDI polymeric electrode	29
Supplementary Figure S14 Proposed plausible pseudocapacitive charge storage mechanism	30
References	31

1. EXPERIMENTAL DETAILS

1.1 Reagents and Materials

All chemicals and solvents were purchased in reagent grade from Aldrich, ACROS, and TCI, except the catalysts Pd(PPh₃)₄, and Pd₂(dba)₂ which were obtained from Strem Chemicals. Tetrahydrofuran was dried and purified by fractional distillation over sodium/benzophenone and handled in a moisture-free atmosphere. Chlorobenzene was used for the polymerization was received from Aldrich which is protected by sure seal paced with N₂. Purification of the intermediates by column chromatography techniques using silica gel (Merck, Kieselgel 60 63-200 MYM SC). The monomers M1 ^[S1] were synthesized by our group previously presented in scheme 1 and other two monomers M2 ^[S2] and M3 ^[S3], were synthesized by a slightly modified procedure as reported in the literatures.

1.2 General information - Equipment and procedural details

1.2.1 Nuclear magnetic resonance spectroscopy (NMR)

¹H and ¹³C NMR spectra were recorded from CDCl₃ solutions using a Bruker AVANCE 400 MHz spectrometer at a temperature of 298 K; chemical shifts are reported as δ values (ppm), for 1H-NMRs referenced to the residual solvent peaks (δ : 7.26 for CDCl₃) and ¹³C-NMRs, spectra were referenced to the residual solvent peaks (δ : 77.16 for CDCl₃).

1.2.2 Thermogravimetric analysis (TGA)

The thermogravimetric analysis (TGA) was conducted by Q400 (WATERS, USA) for all the co-polymers which exhibited high thermal stability and the thermal decomposition temperature (T_d) at 5% weight loss are all above 350 °C.

1.2.3 Gel permeation chromatography (GPC)

Gel permeation chromatography (GPC) was obtained from the Waters (Alliance e2695) model to determine the molecular weights of both the copolymers.

1.2.4 Ultraviolet-visible spectroscopy

UV–Vis absorption spectra were recorded using Hewlett Packard (mode: HP 8453) absorption spectrometer from dilute solutions in chloroform or from solid films that had been spin-coated onto glass substrate from dilute chloroform solutions (5 mg mL⁻¹).

1.2.5 Cyclic voltammetry for energy levels measurement

The electrochemical measurements were carried out in a deoxygenated solution of 0.1 M tetran-butylammoniumhexafluorophosphate (TBAPF₆) in acetonitrile with a computer-controlled electrochemical workstation (Amtek VersaSTAT 3 instrument (AMETEK Scientific, USA)). A glassy carbon electrode, a Pt wire, and an Ag/AgCl electrode were used as the working, counter, and reference electrodes, respectively. The corresponding energy levels of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were calculated from the experimental values of $E_{ox/onset}$ and $E_{red/onset}$ for the solid films **BT-NDI** and **BT-PDI**, formed by drop-casting films at a similar thickness (ca. 5 mg mL⁻¹ in chloroform). The onset potentials were determined from the intersections of two tangents drawn at the rising currents and background currents of the CV measurements.

1.2.6 X-ray diffraction (XRD)

XRD measurement of the polymer powders were conducted on a Bruker D8 Powder diffractometer using Cu X-ray tube (2.2 KW) with maximum voltage 40 kV and power 40 mA in with the 2 θ of 3° to 30°.

1.2.7 Field emission scanning electron microscopy (FESEM)

Field emission type scanning electron microscope (FE-SEM, Hitachi, S-4700) was used for the morphology analysis of the powder polymeric samples.

1.2.8 Field Emission transmission electron microscopy (FETEM)

The elemental mapping and distribution of individual elements (Wt% and Atomic %) was calculated from the EDS mapping taken JEOL (JEM-ARM200F) Cs corrected-Field Emission Transmission Electron Microscope.

2. Computational Details

The ground state geometries of the BT-based conducting oligomers (monomer to trimer) i.e., **BT-NDI** and **BT-PDI** featuring dual acceptor moieties were optimized to understand their electronic properties by employing the density functional theory ^[S4] (DFT) method with the 6-31G(d, p)^[S5,S6] basis set and the B3LYP^[S7] functional along with the polarized continuum (PCM) model of implicit solvation. The TD-DFT calculations were performed at the same level of theory and with the CAM-B3LYP ^[S8] functional. The shorter and longer alkyl substituents of the polymer structure were replaced by methyl and ethyl groups, respectively for the simplification purpose. The vibrational frequencies were identified by performing Hessian calculations on the stationary points attained after achieving self-consistent field convergence. The wave functions extracted from the Gaussian 16 software ^[S9] were utilized to analyze the frontier molecular energy levels and band gap of the oligomers, whereas NTO and MESP analyses were conducted using the Multiwfn 3.8^[S10] and VMD software 1.9.1.^[S11]

3. Electrochemical measurements

3.1 Electrode Fabrication

All electrochemical measurements were conducted using an Amtek VersaSTAT 3 instrument (AMETEK Scientific, USA). The slurry for the working electrode was prepared by mixing the polymeric electrode materials (**BT-NDI** and **BT-PDI**, respectively), conducting carbon black and polyvinylidene difluoride (PVDF) binder with a weight ratio of 75:15:10, using 1,2-dichlorobenzene (DCB) as the solvent. The working electrodes were prepared by drop casting method over pre-activated carbon cloth (CC) substrates with a mass loading of approximately 2 mg/cm².

3.2 Formulas used

The specific capacitance was calculated from the GCD curves using Equation S1:

$$C_{S} = \frac{(I \times \Delta t)}{(m \times \Delta V)}$$
(S1)

where Cs, I/m, Δt , and ΔV denote the specific capacitance (F g⁻¹), applied current density (A g⁻¹), discharge time (s), and potential window of the charge–discharge curve, respectively.

For a symmetric supercapacitor device, multiplication by a factor of two (specific capacitance contribution from both electrodes) in SI Equation 1 is performed considering the mass loading of both the electrodes in the single cell used, as shown in Equation S2:

$$C_{\rm S} = 2 \times \frac{(I \times \Delta t)}{(m \times \Delta V)} \tag{S2}$$

The energy density, E, and power density, P, of the two-electrode systems are calculated using Equation S3 and S4.

Energy density (Wh kg⁻¹) = $\frac{Cs(\Delta V)^2}{7.2}$ (S3) Power density (W kg⁻¹) = $\frac{E}{\Delta t \times 3600}$ (S4)

Scheme 1. Synthetic routes of the monomers (M1–M3)

Reagents and conditions: (i) THF, n-BuLi, -78 °C, 2,2,6,6-tetramethylpiperidine (TMP) (ii) DBI, oleum, (iii) 2- 2-decyltetradecan-1-amine, o-Xylene, Propionic Acid, 140 °C; (iv) Br₂, H₂SO₄, 85 °C.

Scheme 2. Synthesis of BT-diimidie based polymers (BT-NDI and BT-PDI)

Stille polymerization conditions: P(*o*-tolyl)₃, CuI, Pd₂(dba)₃, and chlorobenzene at 130 °C for 24 hr.

Synthesis of monomers

N,N'-bis(2-decyltetradecyl)-2,6-dibromonaphthalene-1,4,5,8- bis(dicarboximide) (M2)

To a flame dried a two neck round bottom flask charged compound 3 (2.0 g, 4.69 mmol), 2- 2decyltetradecan-1-amine^x (4.98 g, 14.08 mmol), o-xylene (1 mL), and propionic acid (5 mL), the resulting mixture was stirred at 140 °C for 2 h. After cooling to room temperature, the solvents were removed in vacuo, and the residue was purified by column chromatography on silica gel with a mixture of chloroform:hexane (1:2, v/v) as eluent. The resulting product was a slight yellow solid with a yield of 1.95 g, 38%. ¹H-NMR (400 MHz, CDCl₃, δ) 8.98 (s, 2H), 4.14 (d, *J* = 4 Hz, 2H), 1.98 (m, 2H), 1.48-1.22 (m, 68H), 0.88-0.84 (m, 12H). ¹³C-NMR (100 MHz, CDCl₃, δ) 161.18, 161.03, 139.17, 128.38, 127.25, 125.29, 124.08, 45.45, 36.47, 31.93, 31.55, 30.04, 29.70, 29.67, 29.66, 29.61, 29.38, 29.36, 26.34, 22.70, 14.14. Elemental analysis calculated for [C₆₂H₁₀₀Br₂N₂O₄]: C, 67.86; H, 9.19; N, 2.55. Obtained: C, 67.52; H, 9.10, N, 2.52.

5,12-dibromo-2,9-bis(2-decyltetradecyl)anthra[2,1,9-def:6,5,10-d'e'f']diisoquinoline-1,3,8,10(2H,9H)-tetraone (M3)

To the mixture of compound 4 (2.1 g, 3.81 mmol), 2- 2-decyltetradecan-1-amine^x (4.05 g, 11.45 mmol), o-xylene (12 mL), and propionic acid (4 mL) was stirred in a two neck round bottomed flask at 140 °C for 2 h. Later in the reaction was cooling to room temperature, the solvents were removed in vacuo, and the residue was purified by column chromatography on silica gel with a mixture of chloroform:hexane (1:1, v/v, gradually up to 3:2) as eluent, resulting a red solid powder (0.63 g, 1.91 mmol, yield 74.7%). ¹H-NMR (400 MHz, CDCl₃, δ) 9.49 (d, *J* = 8.0 Hz, 2H), 8.87 (s, 2H), 8.65 (d, *J* = 8.0 Hz, 2H), 4.12 (d, *J* = 7.2 Hz, 4H), 2.0-1.98 (m, 2H), 1.57-1.30 (m, 68H), 0.86-0.82 (m, 12H). ¹³C-NMR (100 MHz, CDCl₃, δ) 163.18, 16.69, 1338.06, 132.86, 130.02, 129.20, 128.44, 126.95, 123.18, 122.75, 120.81, 44.89, 36.68, 31.91, 31.88, 31.76, 31.72, 30.05, 29.74, 29.59, 29.32, 26.51, 26.50, 22.67, 14.11. Elemental analysis calculated for [C₇₂H₁₀₄Br₂N₂O₄]: C, 70.80; H, 8.58; N, 2.29. Obtained: C, 70.72; H, 8.51; N, 2.21.

General procedure for the synthesis of BT-NDI/PDI-based polymers:

A 20 mL clean and dry microwave vial was charged with monomer M1, monomer M2 (0.150 mmol), or M3 (0.150 mmol), $Pd_2(dba)_3$ (0.005 g, 0.005 mmol), $P(o-tolyl)_3$ (0.006 g, 0.02 mmol), and CuI (0.004 g, 0.02 mmol). The sealed microwave vial was subjected to three cycles of vacuum and purged with N₂, followed by the addition of chlorobenzene (5 mL) at 130 °C for 24 h. After cooling to room temperature, the reaction mixture was added dropwise to a mixture of hydrochloric acid (1 N, 10 mL) and methanol (200 mL), and stirred for 2 h. The polymer precipitate was filtered through a thimble and purified by Soxhlet extraction with methanol, acetone, hexane, dichloromethane, and chloroform for 24 h. The chloroform-soluble fraction was concentrated and reprecipitated into methanol, filtered, and dried under a vacuum to obtain the desired polymers as dark solid powders.^[S12]

BT-NDI *Poly-{2,7-bis(2-decyltetradecyl)-4-methyl-9-(5-(7-(5-methylthiophen-2-yl)benzo[c][1,2,5]thiadiazol-4-yl)thiophen-2-yl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone}*: Using monomer M1 (94 mg), M2 (164 mg), yield: 123.3 mg, 65%,

GPC: Mw = 24.9 K Da, D = 1.68.

BT-PDI Poly-{2,9-bis(2-decyltetradecyl)-5-methyl-13-(5-(7-(5-methylthiophen-2-yl)benzo[c][1,2,5]thiadiazol-4-yl)thiophen-2-yl)anthra[2,1,9-def:6,5,10-d'e'f']diisoquinoline-1,3,8,10(2H,9H)-tetraone}: using monomer M1 (94 mg) and M3 (183 mg), yield: 130 mg, 71% GPC: Mw = 39.5 K Da, D = 1.66.

Supplementary Figure S1. ¹H- and ¹³C-NMR spectra of monomer M2 in CDCl₃.

Supplementary Figure S2. ¹H- and ¹³C-NMR spectra of monomer M3 in CDCl₃.

Supplementary Figure S3. 1H- NMR spectra of Polymer (a) BT-NDI and (b) BT-PDI CDC1₃.

Empower [™] 3			GPC
	SAMPLE	INFORMATI	O N
Sample Name:	BT-NDI	Acquired By:	System
Vial:	22	Acq. Method Set:	Z40229 Test
Injection #:	1	Injection Volume:	100.00 ul
Run Time:	50.0 Minutes	Date Acquired:	3/1/2024 9:35:58 AM KST

Supplementary Figure S4.(a) Gel permeation chromatography (GPC) molecular weight (M_w) of the copolymer **BT-NDI**

22.00

Retention Time

3.00

16.00

18.00

20.00

9

28.00

26.00

24.00

Empower [™] 3			GPC
	SAMPLE	INFORMATI	ON
Sample Name:	BT-PDI	Acquired By:	System
Sample Type:	Broad Unknown	Sample Set Name:	240229
Vial:	23	Acq. Method Set:	Test
Injection #:	1	Injection Volume:	100.00 ul
Run Time:	50.0 Minutes	Date Acquired:	3/1/2024 10:27:13 AM KST

Supplementary Figure S4.(b) Gel permeation chromatography (GPC) molecular weight (M_w) of the copolymer **BT-PDI**

Supplementary Figure S5. TGA thermograms of copolymers BT-NDI, and BT-PDI under N_2 flow at 10 °C min⁻¹.

Supplementary Table T1. Summary of literature survey on similar types of n-type polymer based supercapacitor materials (3-electrode system)

Electrode	Electrolyte	Operating Voltage	Current Density / Scan Rate	Specific Capacitance	Cyclic Stability	Reference - Year
					(%)	
rGO-NDI	1 M H ₂ SO ₄	-0.5 to 0.5	5 mV s ⁻¹	354 F g ⁻¹	-	25 - 2021
rGO/NDI-CN	$1 \text{ M H}_2 \text{SO}_4$	0 to 1.2	0.5	336 F g ⁻¹	10000	26 - 2022
			$A g^{-1}$		cycles	
					$\begin{vmatrix} 80\% (a) & 10 \\ A g^{-1} \end{vmatrix}$	
P(PDI-alt-BDT)	1 M	-1 to 1	0.5	113 F g ⁻¹	-	27 - 2019
	LiClO ₄ /propy lene		Ag^{-1}			
	carbonate					
PEDOT/PDI	0.1 M	0 to 1	0.5	78.6 F g ⁻¹	1000	28 - 2020
	TBAPF ₆	0 to -1	Ag ⁻¹	73.1 F g ⁻¹	cycles	
					(80%)	
NDI-Th/GF	$1 \text{ M H}_2\text{SO}_4$	-0.2 to 1	0.5	173.33 F g ⁻¹	3000	29 - 2024
			Ag^{-1}		cycles	
					$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
P(NDI20D-	$0.5 \text{ MH}_{2}\text{SO}_{4}$	-0.7 to 0.5	0.5	124 F o ⁻¹	5000	42 - 2018
OThPV)	0.5 1112004	0.7 10 0.5	0.5 A ~-1	1211 5	cycles	12 2010
(DHRP)			Ag		100% @ 5	
(Dind)					A g ⁻¹	
					5000	This
BT-PDI	0.1 M	-1.5 to 0	1 A g ⁻¹	196 F g ⁻¹	Cycles	study
	TBAPF ₆				76.2% @ 5 A g ⁻¹	

Supplementary Table T2.

(a) Distribution of individual elements (Wt% and Atomic %) from HRTEM EDS

_							
D	in the	~	ē,		~	٠	4
		9	r	-	v	۰.	

19/05/2023

Map Sum Spe	ctrum	20		·			
Element	Line Type	k Factor	k Factor type	Absorption	Wt%	Wt% Sigma	Atomic %
	2016			Correction	1.00000	1000000 me	
С	K series	2.512	Theoretical	1.00	83.31	0.70	88.75
N	K series	3.166	Theoretical	1.00	4.30	0.69	3.93
0	K series	1.869	Theoretical	1.00	5.93	0.30	4.75
S	K series	0.959	Theoretical	1.00	6.45	0.21	2.58
Total:					100.00		100.00

(b) Comparison of distribution of individual elements (Atomic %) from HRTEM EDS and Calculation

		С	Ν	0	S	Н
BT-PDI	From EDS	88.75 %	3.93 %	4.75 %	2.58 %	
C ₈₈ H ₁₁₆ N ₄ O ₄ S ₃	Calculated	76.03 %	4.03 %	4.6 %	6.92 %	8.41 %

Supplementary Figure S6. The C_{dl} values for ECSA study, showing the corresponding linear fits of **BT-NDI** and **BT-PDI** in the range of 0 to -0.1 V CV.

The electrochemical double-layer capacitance (C_{dl}) for the working electrodes was characterized to calculate electrochemically active surface area (ECSA), determining the active redox reaction region. The C_{dl} of **BT-PDI** is 6.45 mF, which is higher than that of **BT-NDI** electrode (2.89 mF), indicating the presence of numerous beneficial active sites at the electrode-electrolyte interfaces, which enable the electrode to achieve better supercapacitive performance. The ECSA values for **BT-NDI** and **BT-PDI** was calculated to be 72.25 and 161.46 cm², respectively using following equation.^[S13]

$$ECSA = C_{dl}/C_s$$
 (S5)

Supplementary Figure S7. The geometry-optimized structures of **BT-NDI** in (a) monomeric and (c) dimeric forms and **BT-PDI** in (b) monomeric and (d) dimeric forms, respectively.

Supplementary Figure S8. Dihedral angles of the optimized geometries of (a) **BT-NDI** and (b) **BT-PDI** dimers. The dihedral angles between the junction of BT and NDI/PDI are defined by $\Phi 1$, $\Phi 4$, and $\Phi 5$ respectively. The NDI/PDI moiety remains planar in each monomer of the dimeric structure, while the BT moiety does not exhibit planarity.

Supplementary '	Table T3.	Dihedrals c	of the optimize	ed geometries	s of (a) B	T-NDI a	nd (b)	BT-
PDI dimers.								

	Dihedral (in degree)	BT-NDI	BT-PDI
1	Ф1	135.1	130.5
2	Φ2	161.8	162.4
3	Ф3	157.2	137.1
4	Ф4	149.0	129.9
5	Φ5	134.1	123.7
6	Φ6	162.1	163.3
7	Φ7	163.0	162.0

Supplementary Figure S9. The HOMO-LUMO energy diagrams of the monomeric units of (a) **BT-NDI** and (b) **BT-PDI** moieties, dimeric units of (c) **BT-NDI** and (d) **BT-PDI** moieties.

Energies are in eV	BT-NDI				BT-PDI	
	Monomer	Dimer	Trimer	Monomer	Dimer	Trimer
E _{HOMO}	-5.49	-5.41	-5.39	-5.46	-5.45	-5.38
E _{LUMO}	-3.34	-3.39	-3.41	-3.39	-3.42	-3.44
∆ E _g	2.15	2.02	1.98	2.07	2.03	1.94

Supplementary Table T4. The HOMO and LUMO energy levels and the HOMO-LUMO energy gap (eV) for monomer, dimer, and trimer of **BT-NDI** and **BT-PDI**.

Supplementary Figure S10. Natural transition orbitals (NTO) corresponding to the characteristic UV-Vis absorption in the trimeric (a) **BT-NDI** and (b) **BT-PDI**. For each NTO, the hole (represented in blue colour) and electron (represented in green colour) orbitals are given in left and right, respectively. The transition wavelength (λ max) and the highest oscillator strength (f) for each transition are mentioned in the figure.

Supplementary Table T5. The absorption maxima (λ_{max}) corresponds to the characteristic UV-Vis absorption calculated from the TD-DFT method for the monomer, dimer, and trimer of **BT-NDI** and **BT-PDI**.

Absorption maxima Monomer		Dimer	Trimer
(λ _{max})			
BT-NDI	290-474 nm	317-517 nm	316-528
BT-PDI	291-522 nm	306-542 nm	497-744

Supplementary Figure S11. Normalized UV-vis absorption spectra of **BT-NDI** and **BT-PDI**: (a) in a diluted chlorobenzene solution and (b) confined in thin films on glass substrates at room temperature. Cyclic voltammograms of **BT-NDI**, and **BT-PDI** in thin films (scan rate: 100 mV s⁻¹)

Semiconducting	$a\lambda_{max}^{sol}$	^b λ _{max} Film	°НОМО	°LUMO	$^{d}E_{g}^{opt}$	eEgec
Polymer	(nm)	(nm)	(eV)	(eV)	(eV)	(eV)
BT-NDI	341, 486, 676	367, 486, 681	-5.88	-3.77	1.41	2.11
BT-PDI	332, 491, 614	335, 496, 619	-5.80	-3.68	1.58	2.12

Supplementary Table T6. Optical and electrochemical properties of BT-NDI and BT-PDI.

^aAbsorbance of copolymers in dilute chlorobenzene solution. ^bSpin-coated films of copolymers in chlorobenzene solution on glass surfaces. ^cE_{HOMO}/E_{LUMO} = [$-(E_{onset} - E_{onset} (Fc/Fc^{+} vs. Ag/Ag^{+}))$ - 4.8] eV, where 4.8 eV is the energy level of ferrocene below the vacuum level, and the formal potential, $E_{onset} (Fc/Fc^{+} vs. Ag/Ag^{+})$, is equal to 0.45 V. ^dElectrochemical band gap: $E_{g}^{ec} = E_{ox/onset} - E_{red/onset}$. Optical band gap: $dE_{g}^{opt} = 1240/\lambda_{edge}$.

Supplementary Figure S12. (a) CV at 100 mV s⁻¹ scan rate, (b) GCD at 1 A g⁻¹ current density for the individual monomer units of BT, NDI and PDI, (c) Effect of applied current/potential on the monomeric working electrodes.

Supplementary Figure S13. (a) CV curves at different scan rates and (b) GCD curves at varying current densities for the **BT-NDI** polymeric electrode

Supplementary Figure S14. Proposed plausible pseudocapacitive charge storage mechanism in the **BT-NDI** and **BT-PDI** conjugated polymers based on the reversible two consecutive one-electron reduction processes to form electron-polaron and electron-bipolaron.^[S14-S15]

(S1) S. Sharma, R. Soni, S. Kurungot, S. K. Asha, J. Phys. Chem. C 2019, 123, 2084–2093.

- (S2) Z. Chen, Y. Zheng, H. Yan, A. Facchetti, J. Am. Chem. Soc. 2009, 131, 8–9.
- (S3) D. Patra, X. Zhan, R. Linthoinganbi, S. Muduli, S. Mishra, Y. Liu, S. Park, *J. Mater.*

Chem. C 2023, 11, 1457–1463.

- (S4) A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
- (S5) W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257.
- (S6) R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724.
- (S7) L. A. Burns, Á. V.- Mayagoitia, B. G. Sumpter, C. D. Sherrill, *J. Chem. Phys.* 2011, *134*, 084107.
- (S8) T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett. 2004, 393, 51-57.
- (S9) M. J. Frisch, et al., Gaussian 09, Gaussian, Inc., Wallingford CT, 2016.
- (S10) T. Lu, F. Chen, J. Comp. Chem., 2012, 580-592.
- (S11) W. Humphery, A. Dalke, K. Schulten, J. Mol. Graph. 1996, 14, 33-8, 27-8.

(S12) Z. Zhao, Z. Yin, H. Chen, L. Zheng, C. Zhu, L. Zhang, S. Tan, H. Wang, Y. Guo,

Q. Tang, Y. Liu Advanced Materials 2017, 29, 1602410.

(S13) C. C. L. McCrory, S. Jung, J. C. Peters, T. F. Jaramillo, *Journal of the American Chemical Society* **2013**, *135*, 16977–16987.

(S14) A. A. Szumska et al., *Journal of the American Chemical Society* **2021**, *143*, 14795–14805.

(S15) Y. Cho, D. Jang, J. –J. Park, H. Kye, J. E. Kwon., B. -G. Kim, ACS Appl. Energy Mater.,2023.